Release calc version 2.12.0

This commit is contained in:
Landon Curt Noll
2006-05-21 01:11:18 -07:00
parent 7165fa17c7
commit 58d94b08d8
342 changed files with 8845 additions and 6327 deletions

View File

@@ -82,19 +82,19 @@ RUNTIME
the standard algorithms.
EXAMPLE
> print ptest(103^3 * 3931, 0), ptest(4294967291,0)
; print ptest(103^3 * 3931, 0), ptest(4294967291,0)
1 1
In the first example, the first argument > 2^32; in the second the
first argument is the largest prime less than 2^32.
> print ptest(121,-1,2), ptest(121,-1,3), ptest(121,-2,2)
; print ptest(121,-1,2), ptest(121,-1,3), ptest(121,-2,2)
0 1 0
121 is the smallest strong pseudoprime to the base 3.
> x = 151 * 751 * 28351
> print x, ptest(x,-4,1), ptest(x,-5,1)
; x = 151 * 751 * 28351
; print x, ptest(x,-4,1), ptest(x,-5,1)
3215031751 1 0
The integer x in this example is the smallest positive integer that is
@@ -102,14 +102,14 @@ EXAMPLE
not to base 11. The probability that ptest(x,-1,0) will return 1 is
about .23.
> for (i = 0; i < 11; i++) print ptest(91,-1,0),:; print;
; for (i = 0; i < 11; i++) print ptest(91,-1,0),:; print;
0 0 0 1 0 0 0 0 0 0 1
The results for this example depend on the state of the
random number generator; the expectation is that 1 will occur twice.
> a = 24444516448431392447461 * 48889032896862784894921;
> print ptest(a,11,1), ptest(a,12,1), ptest(a,20,2), ptest(a,21,2)
; a = 24444516448431392447461 * 48889032896862784894921;
; print ptest(a,11,1), ptest(a,12,1), ptest(a,20,2), ptest(a,21,2)
1 0 1 0
These results show that a is a strong pseudoprime for all 11 prime
@@ -144,8 +144,8 @@ SEE ALSO
## received a copy with calc; if not, write to Free Software Foundation, Inc.
## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
##
## @(#) $Revision: 29.2 $
## @(#) $Id: ptest,v 29.2 2000/06/07 14:02:33 chongo Exp $
## @(#) $Revision: 29.3 $
## @(#) $Id: ptest,v 29.3 2006/05/07 07:25:46 chongo Exp $
## @(#) $Source: /usr/local/src/cmd/calc/help/RCS/ptest,v $
##
## Under source code control: 1996/02/25 00:27:43