mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.10.2t30
This commit is contained in:
498
qmod.c
Normal file
498
qmod.c
Normal file
@@ -0,0 +1,498 @@
|
||||
/*
|
||||
* Copyright (c) 1995 David I. Bell
|
||||
* Permission is granted to use, distribute, or modify this source,
|
||||
* provided that this copyright notice remains intact.
|
||||
*
|
||||
* Modular arithmetic routines for normal numbers, and also using
|
||||
* the faster REDC algorithm.
|
||||
*/
|
||||
|
||||
#include "qmath.h"
|
||||
#include "config.h"
|
||||
|
||||
|
||||
/*
|
||||
* Structure used for caching REDC information.
|
||||
*/
|
||||
typedef struct {
|
||||
NUMBER *num; /* modulus being cached */
|
||||
REDC *redc; /* REDC information for modulus */
|
||||
long age; /* age counter for reallocation */
|
||||
} REDC_CACHE;
|
||||
|
||||
|
||||
static long redc_age; /* current age counter */
|
||||
static REDC_CACHE redc_cache[MAXREDC]; /* cached REDC info */
|
||||
|
||||
|
||||
static REDC *qfindredc(NUMBER *q);
|
||||
|
||||
|
||||
/*
|
||||
* qmod(q1, q2, rnd) returns zero if q1 is a multiple of q2; it
|
||||
* q1 if q2 is zero. For other q1 and q2, it returns one of
|
||||
* the two remainders with absolute value less than abs(q2)
|
||||
* when q1 is divided by q2; which remainder is returned is
|
||||
* determined by rnd and the signs and relative sizes of q1 and q2.
|
||||
*/
|
||||
NUMBER *
|
||||
qmod(NUMBER *q1, NUMBER *q2, long rnd)
|
||||
{
|
||||
ZVALUE tmp, tmp1, tmp2;
|
||||
NUMBER *q;
|
||||
|
||||
if (qiszero(q2)) return qlink(q1);
|
||||
if (qiszero(q1)) return qlink(&_qzero_);
|
||||
if (qisint(q1) && qisint(q2)) { /* easy case */
|
||||
zmod(q1->num, q2->num, &tmp, rnd);
|
||||
if (ziszero(tmp)) {
|
||||
zfree(tmp);
|
||||
return qlink(&_qzero_);
|
||||
}
|
||||
if(zisone(tmp)) {
|
||||
zfree(tmp);
|
||||
return qlink(&_qone_);
|
||||
}
|
||||
q = qalloc();
|
||||
q->num = tmp;
|
||||
return q;
|
||||
}
|
||||
zmul(q1->num, q2->den, &tmp1);
|
||||
zmul(q2->num, q1->den, &tmp2);
|
||||
zmod(tmp1, tmp2, &tmp, rnd);
|
||||
zfree(tmp1);
|
||||
zfree(tmp2);
|
||||
if (ziszero(tmp)) {
|
||||
zfree(tmp);
|
||||
return qlink(&_qzero_);
|
||||
}
|
||||
zmul(q1->den, q2->den, &tmp1);
|
||||
q = qalloc();
|
||||
zreduce(tmp, tmp1, &q->num, &q->den);
|
||||
zfree(tmp1);
|
||||
zfree(tmp);
|
||||
return q;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Given two numbers q1, q2, qquomod(q1, q2, retqdiv, retqmod)
|
||||
* calculates an integral quotient and numerical remainder such that
|
||||
* q1 = q2 * quotient + remainder. The remainder is zero if
|
||||
* q1 is a multiple of q2; the quotient is zero if q2 is zero.
|
||||
* In other cases, the remainder always has absolute value less than
|
||||
* abs(q2). Which of the two possible quotient-remainder pairs is returned
|
||||
* is determined by the conf->quomod configuration parameter.
|
||||
* If the quomod parameter is zero, the remainder has the sign of q2
|
||||
* and the qotient is rounded towards zero.
|
||||
* The results are returned indirectly through pointers.
|
||||
* The function returns FALSE or
|
||||
* TRUE according as the remainder is or is not zero. For
|
||||
* example, if conf->quomod = 0,
|
||||
* qquomod(11, 4, &x, &y) sets x to 2, y to 3, and returns TRUE.
|
||||
* qquomod(-7, -3, &x, &y) sets x to 2, y to -1, and returns TRUE.
|
||||
*
|
||||
* given:
|
||||
* q1 numbers to do quotient with
|
||||
* q2 numbers to do quotient with
|
||||
* retqdiv returned quotient
|
||||
* retqmod returned modulo
|
||||
*/
|
||||
BOOL
|
||||
qquomod(NUMBER *q1, NUMBER *q2, NUMBER **retqdiv, NUMBER **retqmod)
|
||||
{
|
||||
NUMBER *qq, *qm;
|
||||
ZVALUE tmp1, tmp2, tmp3, tmp4;
|
||||
|
||||
if (qiszero(q2)) { /* zero modulus case */
|
||||
qq = qlink(&_qzero_);
|
||||
qm = qlink(q1);
|
||||
}
|
||||
else if (qisint(q1) && qisint(q2)) { /* integer case */
|
||||
zdiv(q1->num, q2->num, &tmp1, &tmp2, conf->quomod);
|
||||
if (ziszero(tmp1)) {
|
||||
zfree(tmp1);
|
||||
zfree(tmp2);
|
||||
qq = qlink(&_qzero_);
|
||||
qm = qlink(q1);
|
||||
}
|
||||
else {
|
||||
qq = qalloc();
|
||||
qq->num = tmp1;
|
||||
if (ziszero(tmp2)) {
|
||||
zfree(tmp2);
|
||||
qm = qlink(&_qzero_);
|
||||
}
|
||||
else {
|
||||
qm = qalloc();
|
||||
qm->num = tmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
else { /* fractional case */
|
||||
zmul(q1->num, q2->den, &tmp1);
|
||||
zmul(q2->num, q1->den, &tmp2);
|
||||
zdiv(tmp1, tmp2, &tmp3, &tmp4, conf->quomod);
|
||||
zfree(tmp1);
|
||||
zfree(tmp2);
|
||||
if (ziszero(tmp3)) {
|
||||
zfree(tmp3);
|
||||
zfree(tmp4);
|
||||
qq = qlink(&_qzero_);
|
||||
qm = qlink(q1);
|
||||
}
|
||||
else {
|
||||
qq = qalloc();
|
||||
qq->num = tmp3;
|
||||
if (ziszero(tmp4)) {
|
||||
zfree(tmp4);
|
||||
qm = qlink(&_qzero_);
|
||||
}
|
||||
else {
|
||||
qm = qalloc();
|
||||
zmul(q1->den, q2->den, &tmp1);
|
||||
zreduce(tmp4, tmp1, &qm->num, &qm->den);
|
||||
zfree(tmp1);
|
||||
zfree(tmp4);
|
||||
}
|
||||
}
|
||||
}
|
||||
*retqdiv = qq;
|
||||
*retqmod = qm;
|
||||
return !qiszero(qm);
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
/*
|
||||
* Return the product of two integers modulo a third integer.
|
||||
* The result is in the range 0 to q3 - 1 inclusive.
|
||||
* q4 = (q1 * q2) mod q3.
|
||||
*/
|
||||
NUMBER *
|
||||
qmulmod(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
||||
{
|
||||
NUMBER *q;
|
||||
|
||||
if (qisneg(q3) || qiszero(q3))
|
||||
math_error("Non-positive modulus");
|
||||
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q3))
|
||||
math_error("Non-integers for qmulmod");
|
||||
if (qiszero(q1) || qiszero(q2) || qisunit(q3))
|
||||
return qlink(&_qzero_);
|
||||
q = qalloc();
|
||||
zmulmod(q1->num, q2->num, q3->num, &q->num);
|
||||
return q;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Return the square of an integer modulo another integer.
|
||||
* The result is in the range 0 to q2 - 1 inclusive.
|
||||
* q2 = (q1^2) mod q2.
|
||||
*/
|
||||
NUMBER *
|
||||
qsquaremod(NUMBER *q1, NUMBER *q2)
|
||||
{
|
||||
NUMBER *q;
|
||||
|
||||
if (qisneg(q2) || qiszero(q2))
|
||||
math_error("Non-positive modulus");
|
||||
if (qisfrac(q1) || qisfrac(q2))
|
||||
math_error("Non-integers for qsquaremod");
|
||||
if (qiszero(q1) || qisunit(q2))
|
||||
return qlink(&_qzero_);
|
||||
if (qisunit(q1))
|
||||
return qlink(&_qone_);
|
||||
q = qalloc();
|
||||
zsquaremod(q1->num, q2->num, &q->num);
|
||||
return q;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Return the sum of two integers modulo a third integer.
|
||||
* The result is in the range 0 to q3 - 1 inclusive.
|
||||
* q4 = (q1 + q2) mod q3.
|
||||
*/
|
||||
NUMBER *
|
||||
qaddmod(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
||||
{
|
||||
NUMBER *q;
|
||||
|
||||
if (qisneg(q3) || qiszero(q3))
|
||||
math_error("Non-positive modulus");
|
||||
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q3))
|
||||
math_error("Non-integers for qaddmod");
|
||||
q = qalloc();
|
||||
zaddmod(q1->num, q2->num, q3->num, &q->num);
|
||||
return q;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Return the difference of two integers modulo a third integer.
|
||||
* The result is in the range 0 to q3 - 1 inclusive.
|
||||
* q4 = (q1 - q2) mod q3.
|
||||
*/
|
||||
NUMBER *
|
||||
qsubmod(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
||||
{
|
||||
NUMBER *q;
|
||||
|
||||
if (qisneg(q3) || qiszero(q3))
|
||||
math_error("Non-positive modulus");
|
||||
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q3))
|
||||
math_error("Non-integers for qsubmod");
|
||||
if (q1 == q2)
|
||||
return qlink(&_qzero_);
|
||||
q = qalloc();
|
||||
zsubmod(q1->num, q2->num, q3->num, &q->num);
|
||||
return q;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Return the negative of an integer modulo another integer.
|
||||
* The result is in the range 0 to q2 - 1 inclusive.
|
||||
* q2 = (-q1) mod q2.
|
||||
*/
|
||||
NUMBER *
|
||||
qnegmod(NUMBER *q1, NUMBER *q2)
|
||||
{
|
||||
NUMBER *q;
|
||||
|
||||
if (qisneg(q2) || qiszero(q2))
|
||||
math_error("Non-positive modulus");
|
||||
if (qisfrac(q1) || qisfrac(q2))
|
||||
math_error("Non-integers for qnegmod");
|
||||
if (qiszero(q1) || qisunit(q2))
|
||||
return qlink(&_qzero_);
|
||||
q = qalloc();
|
||||
znegmod(q1->num, q2->num, &q->num);
|
||||
return q;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Return whether or not two integers are congruent modulo a third integer.
|
||||
* Returns TRUE if the numbers are not congruent, and FALSE if they are.
|
||||
*/
|
||||
BOOL
|
||||
qcmpmod(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
||||
{
|
||||
if (qisneg(q3) || qiszero(q3))
|
||||
math_error("Non-positive modulus");
|
||||
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q3))
|
||||
math_error("Non-integers for qcmpmod");
|
||||
if (q1 == q2)
|
||||
return FALSE;
|
||||
return zcmpmod(q1->num, q2->num, q3->num);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert an integer into REDC format for use in faster modular arithmetic.
|
||||
* The number can be negative or out of modulus range.
|
||||
*
|
||||
* given:
|
||||
* q1 number to convert into REDC format
|
||||
* q2 modulus
|
||||
*/
|
||||
NUMBER *
|
||||
qredcin(NUMBER *q1, NUMBER *q2)
|
||||
{
|
||||
REDC *rp; /* REDC information */
|
||||
NUMBER *r; /* result */
|
||||
|
||||
if (qisfrac(q1))
|
||||
math_error("Non-integer for qredcin");
|
||||
rp = qfindredc(q2);
|
||||
r = qalloc();
|
||||
zredcencode(rp, q1->num, &r->num);
|
||||
if (qiszero(r)) {
|
||||
qfree(r);
|
||||
return qlink(&_qzero_);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert a REDC format number back into a normal integer.
|
||||
* The resulting number is in the range 0 to the modulus - 1.
|
||||
*
|
||||
* given:
|
||||
* q1 number to convert into REDC format
|
||||
* q2 modulus
|
||||
*/
|
||||
NUMBER *
|
||||
qredcout(NUMBER *q1, NUMBER *q2)
|
||||
{
|
||||
REDC *rp; /* REDC information */
|
||||
NUMBER *r; /* result */
|
||||
|
||||
if (qisfrac(q1))
|
||||
math_error("Non-integer argument for rcout");
|
||||
rp = qfindredc(q2);
|
||||
if (qiszero(q1) || qisunit(q2))
|
||||
return qlink(&_qzero_);
|
||||
r = qalloc();
|
||||
zredcdecode(rp, q1->num, &r->num);
|
||||
if (zisunit(r->num)) {
|
||||
qfree(r);
|
||||
r = qlink(&_qone_);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Multiply two REDC format numbers together producing a REDC format result.
|
||||
* This multiplication is done modulo the specified modulus.
|
||||
*
|
||||
* given:
|
||||
* q1 REDC numbers to be multiplied
|
||||
* q2 REDC numbers to be multiplied
|
||||
* q3 modulus
|
||||
*/
|
||||
NUMBER *
|
||||
qredcmul(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
||||
{
|
||||
REDC *rp; /* REDC information */
|
||||
NUMBER *r; /* result */
|
||||
|
||||
if (qisfrac(q1) || qisfrac(q2))
|
||||
math_error("Non-integer argument for rcmul");
|
||||
rp = qfindredc(q3);
|
||||
if (qiszero(q1) || qiszero(q2) || qisunit(q3))
|
||||
return qlink(&_qzero_);
|
||||
r = qalloc();
|
||||
zredcmul(rp, q1->num, q2->num, &r->num);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Square a REDC format number to produce a REDC format result.
|
||||
* This squaring is done modulo the specified modulus.
|
||||
*
|
||||
* given:
|
||||
* q1 REDC numbers to be squared
|
||||
* q2 modulus
|
||||
*/
|
||||
NUMBER *
|
||||
qredcsquare(NUMBER *q1, NUMBER *q2)
|
||||
{
|
||||
REDC *rp; /* REDC information */
|
||||
NUMBER *r; /* result */
|
||||
|
||||
if (qisfrac(q1))
|
||||
math_error("Non-integer argument for rcsq");
|
||||
rp = qfindredc(q2);
|
||||
if (qiszero(q1) || qisunit(q2))
|
||||
return qlink(&_qzero_);
|
||||
r = qalloc();
|
||||
zredcsquare(rp, q1->num, &r->num);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Raise a REDC format number to the indicated power producing a REDC
|
||||
* format result. This is done modulo the specified modulus. The
|
||||
* power to be raised to is a normal number.
|
||||
*
|
||||
* given:
|
||||
* q1 REDC number to be raised
|
||||
* q2 power to be raised to
|
||||
* q3 modulus
|
||||
*/
|
||||
NUMBER *
|
||||
qredcpower(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
||||
{
|
||||
REDC *rp; /* REDC information */
|
||||
NUMBER *r; /* result */
|
||||
|
||||
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q2))
|
||||
math_error("Non-integer argument for rcpow");
|
||||
if (qisneg(q2))
|
||||
math_error("Negative exponent argument for rcpow");
|
||||
rp = qfindredc(q3);
|
||||
r = qalloc();
|
||||
zredcpower(rp, q1->num, q2->num, &r->num);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Search for and return the REDC information for the specified number.
|
||||
* The information is cached into a local table so that future calls
|
||||
* for this information will be quick. If the table fills up, then
|
||||
* the oldest cached entry is reused.
|
||||
*
|
||||
* given:
|
||||
* q modulus to find REDC information of
|
||||
*/
|
||||
static REDC *
|
||||
qfindredc(NUMBER *q)
|
||||
{
|
||||
register REDC_CACHE *rcp;
|
||||
REDC_CACHE *bestrcp;
|
||||
|
||||
/*
|
||||
* First try for an exact pointer match in the table.
|
||||
*/
|
||||
for (rcp = redc_cache; rcp < &redc_cache[MAXREDC]; rcp++) {
|
||||
if (q == rcp->num) {
|
||||
rcp->age = ++redc_age;
|
||||
return rcp->redc;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Search the table again looking for a value which matches.
|
||||
*/
|
||||
for (rcp = redc_cache; rcp < &redc_cache[MAXREDC]; rcp++) {
|
||||
if (rcp->age && (qcmp(q, rcp->num) == 0)) {
|
||||
rcp->age = ++redc_age;
|
||||
return rcp->redc;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Must invalidate an existing entry in the table.
|
||||
* Find the oldest (or first unused) entry.
|
||||
* But first make sure the modulus will be reasonable.
|
||||
*/
|
||||
if (qisfrac(q) || qisneg(q)) {
|
||||
math_error("REDC modulus must be positive odd integer");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
|
||||
bestrcp = NULL;
|
||||
for (rcp = redc_cache; rcp < &redc_cache[MAXREDC]; rcp++) {
|
||||
if ((bestrcp == NULL) || (rcp->age < bestrcp->age))
|
||||
bestrcp = rcp;
|
||||
}
|
||||
|
||||
/*
|
||||
* Found the best entry.
|
||||
* Free the old information for the entry if necessary,
|
||||
* then initialize it.
|
||||
*/
|
||||
rcp = bestrcp;
|
||||
if (rcp->age) {
|
||||
rcp->age = 0;
|
||||
qfree(rcp->num);
|
||||
zredcfree(rcp->redc);
|
||||
}
|
||||
|
||||
rcp->redc = zredcalloc(q->num);
|
||||
rcp->num = qlink(q);
|
||||
rcp->age = ++redc_age;
|
||||
return rcp->redc;
|
||||
}
|
||||
|
||||
/* END CODE */
|
Reference in New Issue
Block a user