mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.10.2t30
This commit is contained in:
67
lib/bernoulli.cal
Normal file
67
lib/bernoulli.cal
Normal file
@@ -0,0 +1,67 @@
|
||||
/*
|
||||
* Copyright (c) 1995 David I. Bell
|
||||
* Permission is granted to use, distribute, or modify this source,
|
||||
* provided that this copyright notice remains intact.
|
||||
*
|
||||
* Calculate the Nth Bernoulli number B(n).
|
||||
* This uses the following symbolic formula to calculate B(n):
|
||||
*
|
||||
* (b+1)^(n+1) - b^(n+1) = 0
|
||||
*
|
||||
* where b is a dummy value, and each power b^i gets replaced by B(i).
|
||||
* For example, for n = 3:
|
||||
* (b+1)^4 - b^4 = 0
|
||||
* b^4 + 4*b^3 + 6*b^2 + 4*b + 1 - b^4 = 0
|
||||
* 4*b^3 + 6*b^2 + 4*b + 1 = 0
|
||||
* 4*B(3) + 6*B(2) + 4*B(1) + 1 = 0
|
||||
* B(3) = -(6*B(2) + 4*B(1) + 1) / 4
|
||||
*
|
||||
* The combinatorial factors in the expansion of the above formula are
|
||||
* calculated interatively, and we use the fact that B(2i+1) = 0 if i > 0.
|
||||
* Since all previous B(n)'s are needed to calculate a particular B(n), all
|
||||
* values obtained are saved in an array for ease in repeated calculations.
|
||||
*/
|
||||
static Bnmax;
|
||||
static mat Bn[1001];
|
||||
|
||||
|
||||
define B(n)
|
||||
{
|
||||
local nn, np1, i, sum, mulval, divval, combval;
|
||||
|
||||
if (!isint(n) || (n < 0))
|
||||
quit "Non-negative integer required for Bernoulli";
|
||||
|
||||
if (n == 0)
|
||||
return 1;
|
||||
if (n == 1)
|
||||
return -1/2;
|
||||
if (isodd(n))
|
||||
return 0;
|
||||
if (n > 1000)
|
||||
quit "Very large Bernoulli";
|
||||
|
||||
if (n <= Bnmax)
|
||||
return Bn[n];
|
||||
|
||||
for (nn = Bnmax + 2; nn <= n; nn+=2) {
|
||||
np1 = nn + 1;
|
||||
mulval = np1;
|
||||
divval = 1;
|
||||
combval = 1;
|
||||
sum = 1 - np1 / 2;
|
||||
for (i = 2; i < np1; i+=2) {
|
||||
combval = combval * mulval-- / divval++;
|
||||
combval = combval * mulval-- / divval++;
|
||||
sum += combval * Bn[i];
|
||||
}
|
||||
Bn[nn] = -sum / np1;
|
||||
}
|
||||
Bnmax = n;
|
||||
return Bn[n];
|
||||
}
|
||||
|
||||
global lib_debug;
|
||||
if (lib_debug >= 0) {
|
||||
print "B(n) defined";
|
||||
}
|
Reference in New Issue
Block a user