mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.10.2t30
This commit is contained in:
112
help/mod
Normal file
112
help/mod
Normal file
@@ -0,0 +1,112 @@
|
||||
NAME
|
||||
mod - compute the remainder for an integer quotient
|
||||
|
||||
SYNOPSIS
|
||||
mod(x, y, rnd)
|
||||
x % y
|
||||
|
||||
TYPES
|
||||
If x is a matrix or list, the returned value is a matrix or list v of
|
||||
the same structure for which each element v[[i]] = mod(x[[i]], y, rnd).
|
||||
|
||||
If x is an xx-object or x is not an object and y is an xx-object,
|
||||
this function calls the user-defined function xx_mod(x, y, rnd);
|
||||
the types of arguments and returned value are as required by the
|
||||
definition of xx_mod().
|
||||
|
||||
If neither x nor y is an object, or x is not a matrix or list:
|
||||
|
||||
x number (real or complex)
|
||||
y real
|
||||
rnd integer, defaults to config("mod")
|
||||
|
||||
return number
|
||||
|
||||
DESCRIPTION
|
||||
If x is real or complex and y is zero, mod(x, y, rnd) returns x.
|
||||
|
||||
If x is complex, mod(x, y, rnd) returns
|
||||
mod(re(x), y, rnd) + mod(im(x), y, rnd) * 1i.
|
||||
|
||||
In the following it is assumed x is real and y is nonzero.
|
||||
|
||||
If x/y is an integer mod(x, y, rnd) returns zero.
|
||||
|
||||
If x/y is not an integer, mod(x, y, rnd) returns one of the two numbers
|
||||
r for which for some integer q, x = q * v + r and abs(r) < abs(y).
|
||||
Which of the two numbers is returned is controlled by rnd.
|
||||
|
||||
If bit 4 of rnd is set (e.g. if 16 <= rnd < 32) abs(r) <= abs(y)/2;
|
||||
this uniquely determines r if abs(r) < abs(y)/2. If bit 4 of rnd is
|
||||
set and abs(r) = abs(y)/2, or if bit 4 of r is not set, the result for
|
||||
r depends on rnd as in the following table:
|
||||
|
||||
(Blank entries indicate that the description would be complicated
|
||||
and probably not of much interest.)
|
||||
|
||||
rnd & 15 sign of r parity of q
|
||||
|
||||
0 sgn(y)
|
||||
1 -sgn(y)
|
||||
2 sgn(x)
|
||||
3 -sgn(x)
|
||||
4 +
|
||||
5 -
|
||||
6 sgn(x/y)
|
||||
7 -sgn(x/y)
|
||||
8 even
|
||||
9 odd
|
||||
10 even if x/y > 0, otherwise odd
|
||||
11 odd if x/y > 0, otherwise even
|
||||
12 even if y > 0, otherwise odd
|
||||
13 odd if y > 0, otherwise even
|
||||
14 even if x > 0, otherwise odd
|
||||
15 odd if x > 0, otherwise even
|
||||
|
||||
This dependence on rnd is consistent with quo(x, y, rnd) and
|
||||
appr(x, y, rnd) in that for any real x and y and any integer rnd,
|
||||
|
||||
x = y * quo(x, y, rnd) + mod(x, y, rnd).
|
||||
mod(x, y, rnd) = x - appr(x, y, rnd)
|
||||
|
||||
If y and rnd are fixed and mod(x, y, rnd) is to be considered as
|
||||
a canonical residue of x modulo y, bits 1 and 3 of rnd should be
|
||||
zero: if 0 <= rnd < 32, it is only for rnd = 0, 1, 4, 5, 16, 17,
|
||||
20, or 21, that the set of possible values for mod(x, y, rnd)
|
||||
form an interval of length y, and for any x1, x2,
|
||||
|
||||
mod(x1, y, rnd) = mod(x2, y, rnd)
|
||||
|
||||
is equivalent to:
|
||||
|
||||
x1 is congruent to x2 modulo y.
|
||||
|
||||
This is particularly relevant when working with the ring of
|
||||
integers modulo an integer y.
|
||||
|
||||
EXAMPLE
|
||||
> print mod(11,5,0), mod(11,5,1), mod(-11,5,2), mod(-11,-5,3)
|
||||
1 -4 -1 4
|
||||
|
||||
> print mod(12.5,5,16), mod(12.5,5,17), mod(12.5,5,24), mod(-7.5,-5,24)
|
||||
2.5 -2.5 2.5 2.5
|
||||
|
||||
> A = list(11,13,17,23,29)
|
||||
> print mod(A,10,0)
|
||||
|
||||
list (5 elements, 5 nonzero):
|
||||
[[0]] = 1
|
||||
[[1]] = 3
|
||||
[[2]] = 7
|
||||
[[3]] = 3
|
||||
[[4]] = 9
|
||||
|
||||
LIMITS
|
||||
none
|
||||
|
||||
LIBRARY
|
||||
void modvalue(VALUE *x, VALUE *y, VALUE *rnd, VALUE *result)
|
||||
NUMBER *qmod(NUMBER *y, NUMBER *y, long rnd)
|
||||
|
||||
SEE ALSO
|
||||
quo, quomod, //, %
|
Reference in New Issue
Block a user