Release calc version 2.12.4.10

This commit is contained in:
Landon Curt Noll
2013-08-11 02:13:25 -07:00
parent 7f125396c1
commit 17e3535595
70 changed files with 6874 additions and 628 deletions

502
cal/statistics.cal Normal file
View File

@@ -0,0 +1,502 @@
/*
* statistics - Some assorted statistics functions.
*
* Copyright (C) 2013 Christoph Zurnieden
*
* statistics is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* statistics is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @(#) $Revision: 30.3 $
* @(#) $Id: statistics.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/statistics.cal,v $
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
get dependencies
*/
read -once factorial2 brentsolve
/*******************************************************************************
*
*
* Continuous distributions
*
*
******************************************************************************/
/* regularized incomplete gamma function like in Octave, hence the name */
define gammaincoctave(z,a){
local tmp;
tmp = gamma(z);
return (tmp-gammainc(a,z))/tmp;
}
/* Inverse incomplete beta function. Old and slow. */
static __CZ__invbeta_a;
static __CZ__invbeta_b;
static __CZ__invbeta_x;
define __CZ__invbeta(x){
return __CZ__invbeta_x-__CZ__ibetaas63(x,__CZ__invbeta_a,__CZ__invbeta_b);
}
define invbetainc_slow(x,a,b){
local flag ret eps;
/* place checks and balances here */
eps = epsilon();
if(.5 < x){
__CZ__invbeta_x = 1 - x;
__CZ__invbeta_a = b;
__CZ__invbeta_b = a;
flag = 1;
}
else{
__CZ__invbeta_x = x;
__CZ__invbeta_a = a;
__CZ__invbeta_b = b;
flag = 0;
}
ret = brentsolve2(0,1,1);
if(flag == 1)
ret = 1-ret;
epsilon(eps);
return ret;
}
/* Inverse incomplete beta function. Still old but not as slow as the function
above. */
/*
Purpose:
invbetainc computes inverse of the incomplete Beta function.
Licensing:
This code is distributed under the GNU LGPL license.
Modified:
10 August 2013
Author:
Original FORTRAN77 version by GW Cran, KJ Martin, GE Thomas.
C version by John Burkardt.
Calc version by Christoph Zurnieden
Reference:
GW Cran, KJ Martin, GE Thomas,
Remark AS R19 and Algorithm AS 109:
A Remark on Algorithms AS 63: The Incomplete Beta Integral
and AS 64: Inverse of the Incomplete Beta Integeral,
Applied Statistics,
Volume 26, Number 1, 1977, pages 111-114.
Parameters:
Input, P, Q, the parameters of the incomplete
Beta function.
Input, BETA, the logarithm of the value of
the complete Beta function.
Input, ALPHA, the value of the incomplete Beta
function. 0 <= ALPHA <= 1.
Output, the argument of the incomplete
Beta function which produces the value ALPHA.
Local Parameters:
Local, SAE, the most negative decimal exponent
which does not cause an underflow.
*/
define invbetainc(x,a,b){
return __CZ__invbetainc(a,b,lnbeta(a,b),x);
}
define __CZ__invbetainc(p,q,beta,alpha){
local a acu adj fpu g h iex indx pp prev qq r s sae sq t tx value;
local w xin y yprev places eps;
/* Dirty trick, don't try at home */
eps= epsilon(epsilon()^2);
sae = -((log(1/epsilon())/log(2))//2);
fpu = 10.0^sae;
places = highbit(1 + int(1/epsilon())) + 1;
value = alpha;
if( p <= 0.0 ){
epsilon(eps);
return newerror("invbeta: argument p <= 0");
}
if( q <= 0.0 ){
epsilon(eps);
return newerror("invbeta: argument q <= 0");
}
if( alpha < 0.0 || 1.0 < alpha ){
epsilon(eps);
return newerror("invbeta: argument alpha out of domain");
}
if( alpha == 0.0 ){
epsilon(eps);
return 0;
}
if( alpha == 1.0 ){
epsilon(eps);
return 1;
}
if ( 0.5 < alpha ){
a = 1.0 - alpha;
pp = q;
qq = p;
indx = 1;
}
else{
a = alpha;
pp = p;
qq = q;
indx = 0;
}
r = sqrt ( - ln ( a * a ) );
y = r-(2.30753+0.27061*r)/(1.0+(0.99229+0.04481*r)*r);
if ( 1.0 < pp && 1.0 < qq ){
r = ( y * y - 3.0 ) / 6.0;
s = 1.0 / ( pp + pp - 1.0 );
t = 1.0 / ( qq + qq - 1.0 );
h = 2.0 / ( s + t );
w = y*sqrt(h+r)/h-(t-s)*(r+5.0/6.0-2.0/(3.0*h));
value = pp / ( pp + qq * exp ( w + w ) );
}
else{
r = qq + qq;
t = 1.0 / ( 9.0 * qq );
t = r * ( 1.0 - t + y * sqrt ( t )^ 3 );
if ( t <= 0.0 ){
value = 1.0 - exp ( ( ln ( ( 1.0 - a ) * qq ) + beta ) / qq );
}
else{
t = ( 4.0 * pp + r - 2.0 ) / t;
if ( t <= 1.0 ) {
value = exp ( ( ln ( a * pp ) + beta ) / pp );
}
else{
value = 1.0 - 2.0 / ( t + 1.0 );
}
}
}
r = 1.0 - pp;
t = 1.0 - qq;
yprev = 0.0;
sq = 1.0;
prev = 1.0;
if ( value < 0.0001 )
value = 0.0001;
if ( 0.9999 < value )
value = 0.9999;
acu = 10^sae;
for ( ; ; ){
y = bround(__CZ__ibetaas63( value, pp, qq, beta),places);
xin = value;
y = bround(exp(ln(y-a)+(beta+r*ln(xin)+t*ln(1.0- xin ) )),places);
if ( y * yprev <= 0.0 ) {
prev = max ( sq, fpu );
}
g = 1.0;
for ( ; ; ){
for ( ; ; ){
adj = g * y;
sq = adj * adj;
if ( sq < prev ){
tx = value - adj;
if ( 0.0 <= tx && tx <= 1.0 ) break;
}
g = g / 3.0;
}
if ( prev <= acu ){
if ( indx )
value = 1.0 - value;
epsilon(eps);
return value;
}
if ( y * y <= acu ){
if ( indx )
value = 1.0 - value;
epsilon(eps);
return value;
}
if ( tx != 0.0 && tx != 1.0 )
break;
g = g / 3.0;
}
if ( tx == value ) break;
value = tx;
yprev = y;
}
if ( indx )
value = 1.0 - value;
epsilon(eps);
return value;
}
/*******************************************************************************
*
*
* Beta distribution
*
*
******************************************************************************/
define betapdf(x,a,b){
if(x<0 || x>1) return newerror("betapdf: parameter x out of domain");
if(a<=0) return newerror("betapdf: parameter a out of domain");
if(b<=0) return newerror("betapdf: parameter b out of domain");
return 1/beta(a,b) *x^(a-1)*(1-x)^(b-1);
}
define betacdf(x,a,b){
if(x<0 || x>1) return newerror("betacdf: parameter x out of domain");
if(a<=0) return newerror("betacdf: parameter a out of domain");
if(b<=0) return newerror("betacdf: parameter b out of domain");
return betainc(x,a,b);
}
define betacdfinv(x,a,b){
return invbetainc(x,a,b);
}
define betamedian(a,b){
local t106 t104 t103 t105 approx ret;
if(a == b) return 1/2;
if(a == 1 && b > 0) return 1-(1/2)^(1/b);
if(a > 0 && b == 1) return (1/2)^(1/a);
if(a == 3 && b == 2){
/* Yes, the author is not ashamed to ask Maxima for the exact solution
of a quartic equation. */
t103 = ( (2^(3/2))/27 +4/27 )^(1/3);
t104 = sqrt( ( 9*t103^2 + 4*t103 + 2 )/(t103) )/3;
t105 = -t103-2/(9*t103) +8/9;
t106 = sqrt( (27*t104*t105+16)/(t104) )/(2*3^(3/2));
return -t106+t104/2+1/3;
}
if(a == 2 && b == 3){
t103 = ( (2^(3/2))/27 +4/27 )^(1/3);
t104 = sqrt( ( 9*t103^2 + 4*t103 + 2 )/(t103) )/3;
t105 = -t103-2/(9*t103) +8/9;
t106 = sqrt( (27*t104*t105+16)/(t104) )/(2*3^(3/2));
return 1-(-t106+t104/2+1/3);
}
return invbetainc(1/2,a,b);
}
define betamode(a,b){
if(a + b == 2) return newerror("betamod: a + b = 2 = division by zero");
return (a-1)/(a+b-2);
}
define betavariance(a,b){
return (a*b)/( (a+b)^2*(a+b+1) );
}
define betalnvariance(a,b){
return polygamma(1,a)-polygamma(a+b);
}
define betaskewness(a,b){
return (2*(b-a)*sqrt(a+b+1))/( (a+b+1)*sqrt(a*b) );
}
define betakurtosis(a,b){
local num denom;
num = 6*( (a-b)^2*(a+b+1)-a*b*(a+b+2));
denom = a*b*(a+b+2)*(a+b+3);
return num/denom;
}
define betaentropy(a,b){
return lnbeta(a,b)-(a-1)*psi(a)-(b-1)*psi(b)+(a+b+1)*psi(a+b);
}
/*******************************************************************************
*
*
* Normal (Gaussian) distribution
*
*
******************************************************************************/
define normalpdf(x,mu,sigma){
return 1/(sqrt(2*pi()*sigma^2))*exp( ( (x-mu)^2 )/( 2*sigma^2 ) );
}
define normalcdf(x,mu,sigma){
return 1/2*(1+erf( ( x-mu )/( sqrt(2*sigma^2) ) ) );
}
define probit(p){
if(p<0 || p > 1) return newerror("probit: p out of domain 0<=p<=1");
return sqrt(2)*ervinv(2*p-1);
}
define normalcdfinv(p,mu,sigma){
if(p<0 || p > 1) return newerror("normalcdfinv: p out of domain 0<=p<=1");
return mu+ sigma*probit(p);
}
define normalmean(mu,sigma){return mu;}
define normalmedian(mu,sigma){return mu;}
define normalmode(mu,sigma){return mu;}
define normalvariance(mu,sigma){return sigma^2;}
define normalskewness(mu,sigma){return 0;}
define normalkurtosis(mu,sigma){return 0;}
define normalentropy(mu,sigma){
return 1/3*ln( 2*pi()*exp(1)*sigma^2 );
}
/* moment generating f. */
define normalmgf(mu,sigma,t){
return exp(mu*t+1/2*sigma^2*t^2);
}
/* characteristic f. */
define normalcf(mu,sigma,t){
return exp(mu*t-1/2*sigma^2*t^2);
}
/*******************************************************************************
*
*
* Chi-squared distribution
*
*
******************************************************************************/
define chisquaredpdf(x,k){
if(!isint(k) || k<0) return newerror("chisquaredpdf: k not in N");
if(im(x) || x<0) return newerror("chisquaredpdf: x not in +R");
/* The gamma function does not check for half integers, do it here? */
return 1/(2^(k/2)*gamma(k/2))*x^((k/2)-1)*exp(-x/2);
}
define chisquaredpcdf(x,k){
if(!isint(k) || k<0) return newerror("chisquaredcdf: k not in N");
if(im(x) || x<0) return newerror("chisquaredcdf: x not in +R");
return 1/(gamma(k/2))*gammainc(k/2,x/2);
}
define chisquaredmean(x,k){return k;}
define chisquaredmedian(x,k){
/* TODO: implement a FAST inverse incomplete gamma-{q,p} function */
return k*(1-2/(9*k))^3;
}
define chisquaredmode(x,k){return max(k-2,0);}
define chisquaredvariance(x,k){return 2*k;}
define chisquaredskewness(x,k){return sqrt(8/k);}
define chisquaredkurtosis(x,k){return 12/k;}
define chisquaredentropy(x,k){
return k/2+ln(2*gamma(k/2)) + (1-k/2)*psi(k/2);
}
define chisquaredmfg(k,t){
if(t>=1/2)return newerror("chisquaredmfg: t >= 1/2");
return (1-2*t)^(k/2);
}
define chisquaredcf(k,t){
return (1-2*1i*t)^(k/2);
}
/*
* restore internal function from resource debugging
*/
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "gammaincoctave(z,a)";
print "invbetainc(x,a,b)";
print "betapdf(x,a,b)";
print "betacdf(x,a,b)";
print "betacdfinv(x,a,b)";
print "betamedian(a,b)";
print "betamode(a,b)";
print "betavariance(a,b)";
print "betalnvariance(a,b)";
print "betaskewness(a,b)";
print "betakurtosis(a,b)";
print "betaentropy(a,b)";
print "normalpdf(x,mu,sigma)";
print "normalcdf(x,mu,sigma)";
print "probit(p)";
print "normalcdfinv(p,mu,sigma)";
print "normalmean(mu,sigma)";
print "normalmedian(mu,sigma)";
print "normalmode(mu,sigma)";
print "normalvariance(mu,sigma)";
print "normalskewness(mu,sigma)";
print "normalkurtosis(mu,sigma)";
print "normalentropy(mu,sigma)";
print "normalmgf(mu,sigma,t)";
print "normalcf(mu,sigma,t)";
print "chisquaredpdf(x,k)";
print "chisquaredpcdf(x,k)";
print "chisquaredmean(x,k)";
print "chisquaredmedian(x,k)";
print "chisquaredmode(x,k)";
print "chisquaredvariance(x,k)";
print "chisquaredskewness(x,k)";
print "chisquaredkurtosis(x,k)";
print "chisquaredentropy(x,k)";
print "chisquaredmfg(k,t)";
print "chisquaredcf(k,t)";
}