mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.12.4.10
This commit is contained in:
204
cal/factorial.cal
Normal file
204
cal/factorial.cal
Normal file
@@ -0,0 +1,204 @@
|
||||
/*
|
||||
* factorial - implementation of different algorithms for the factorial
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* factorial is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* factorial is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: factorial.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/factorial.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* hide internal function from resource debugging
|
||||
*/
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/*
|
||||
get dependencies
|
||||
*/
|
||||
read -once toomcook;
|
||||
|
||||
|
||||
/* A simple list to keep things...uhm...simple?*/
|
||||
static __CZ__primelist = list();
|
||||
|
||||
/* Helper for primorial: fill list with primes in range a,b */
|
||||
define __CZ__fill_prime_list(a,b)
|
||||
{
|
||||
local k;
|
||||
k=a;
|
||||
if(isprime(k))k--;
|
||||
while(1){
|
||||
k = nextprime(k);
|
||||
if(k > b) break;
|
||||
append(__CZ__primelist,k );
|
||||
}
|
||||
}
|
||||
|
||||
/* Helper for factorial: how often prime p divides the factorial of n */
|
||||
define __CZ__prime_divisors(n,p)
|
||||
{
|
||||
local q,m;
|
||||
q = n;
|
||||
m = 0;
|
||||
if (p > n) return 0;
|
||||
if (p > n/2) return 1;
|
||||
while (q >= p) {
|
||||
q = q//p;
|
||||
m += q;
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
/*
|
||||
Wrapper. Please set cut-offs to own taste and hardware.
|
||||
*/
|
||||
define factorial(n){
|
||||
local prime result shift prime_list k k1 k2 expo_list pix cut primorial;
|
||||
|
||||
result = 1;
|
||||
prime = 2;
|
||||
|
||||
if(!isint(n)) {
|
||||
return newerror("factorial(n): n is not an integer"); ## or gamma(n)?
|
||||
}
|
||||
if(n < 0) return newerror("factorial(n): n < 0");
|
||||
if(n < 9000 && !isdefined("test8900")) {
|
||||
## builtin is implemented with splitting but only with
|
||||
## Toom-Cook 2 (by Karatsuba (the father))
|
||||
return n!;
|
||||
}
|
||||
|
||||
shift = __CZ__prime_divisors(n,prime);
|
||||
prime = 3;
|
||||
cut = n//2;
|
||||
pix = pix(cut);
|
||||
prime_list = mat[pix];
|
||||
expo_list = mat[pix];
|
||||
|
||||
k = 0;
|
||||
/*
|
||||
Peter Borwein's algorithm
|
||||
|
||||
@Article{journals/jal/Borwein85,
|
||||
author = {Borwein, Peter B.},
|
||||
title = {On the Complexity of Calculating Factorials.},
|
||||
journal = {J. Algorithms},
|
||||
year = {1985},
|
||||
number = {3},
|
||||
url = {http://dblp.uni-trier.de/db/journals/jal/jal6.html#Borwein85}
|
||||
*/
|
||||
|
||||
do {
|
||||
prime_list[k] = prime;
|
||||
expo_list[k++] = __CZ__prime_divisors(n,prime);
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= cut);
|
||||
|
||||
/* size of the largest exponent in bits */
|
||||
k1 = highbit(expo_list[0]);
|
||||
k2 = size(prime_list)-1;
|
||||
|
||||
for(;k1>=0;k1--){
|
||||
/*
|
||||
the cut-off for T-C-4 ist still to low, using T-C-3 here
|
||||
TODO: check cutoffs
|
||||
*/
|
||||
result = toomcook3square(result);
|
||||
/*
|
||||
almost all time is spend in this loop, so cutting of the
|
||||
upper half of the primes makes sense
|
||||
*/
|
||||
for(k=0; k<=k2; k++) {
|
||||
if((expo_list[k] & (1 << k1)) != 0) {
|
||||
result *= prime_list[k];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
primorial = primorial( cut, n);
|
||||
result *= primorial;
|
||||
result <<= shift;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Helper for primorial: do the product with binary splitting
|
||||
TODO: do it without the intermediate list
|
||||
*/
|
||||
define __CZ__primorial__lowlevel( a, b ,p)
|
||||
{
|
||||
local c;
|
||||
if( b == a) return p ;
|
||||
if( b-a > 1){
|
||||
c= (b + a) >> 1;
|
||||
return __CZ__primorial__lowlevel( a , c , __CZ__primelist[a] )
|
||||
* __CZ__primorial__lowlevel( c+1 , b , __CZ__primelist[b] ) ;
|
||||
}
|
||||
return __CZ__primelist[a] * __CZ__primelist[b];
|
||||
}
|
||||
|
||||
/*
|
||||
Primorial, Product of consecutive primes in range a,b
|
||||
|
||||
Originally meant to do primorials with a start different from 2, but
|
||||
found out that this is faster at about a=1,b>=10^5 than the builtin
|
||||
function pfact(). With the moderately small list a=1,b=10^6 (78498
|
||||
primes) it is 3 times faster. A quick look-up showed what was already
|
||||
guessed: pfact() does it linearly. (BTW: what is the time complexity
|
||||
of the primorial with the naive algorithm?)
|
||||
*/
|
||||
define primorial(a,b)
|
||||
{
|
||||
local C1 C2;
|
||||
if(!isint(a)) return newerror("primorial(a,b): a is not an integer");
|
||||
else if(!isint(b)) return newerror("primorial(a,b): b is not an integer");
|
||||
else if(a < 0) return newerror("primorial(a,b): a < 0");
|
||||
else if( b < 2 ) return newerror("primorial(a,b): b < 2");
|
||||
else if( b < a) return newerror("primorial(a,b): b < a");
|
||||
else{
|
||||
/* last prime < 2^32 is also max. prime for nextprime()*/
|
||||
if(b >= 4294967291) return newerror("primorial(a,b): max. prime exceeded");
|
||||
if(b == 2) return 2;
|
||||
/*
|
||||
Can be extended by way of pfact(b)/pfact(floor(a-1/2)) for small a
|
||||
*/
|
||||
if(a<=2 && b < 10^5) return pfact(b);
|
||||
/* TODO: use pix() and a simple array (mat[])instead*/
|
||||
__CZ__primelist = list();
|
||||
__CZ__fill_prime_list(a,b);
|
||||
C1 = size(__CZ__primelist)-1;
|
||||
return __CZ__primorial__lowlevel( 0, C1,1)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
* report important interface functions
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "factorial(n)";
|
||||
print "primorial(a, b)";
|
||||
}
|
Reference in New Issue
Block a user