mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.12.4.10
This commit is contained in:
34
cal/Makefile
34
cal/Makefile
@@ -18,8 +18,8 @@
|
||||
# received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
#
|
||||
# @(#) $Revision: 30.5 $
|
||||
# @(#) $Id: Makefile,v 30.5 2011/05/23 22:50:18 chongo Exp $
|
||||
# @(#) $Revision: 30.7 $
|
||||
# @(#) $Id: Makefile,v 30.7 2013/08/11 09:07:26 chongo Exp $
|
||||
# @(#) $Source: /usr/local/src/bin/calc/cal/RCS/Makefile,v $
|
||||
#
|
||||
# Under source code control: 1991/07/21 05:00:54
|
||||
@@ -182,19 +182,21 @@ TOUCH= touch
|
||||
|
||||
# The calc files to install
|
||||
#
|
||||
CALC_FILES= README bigprime.cal deg.cal ellip.cal lucas.cal lucas_chk.cal \
|
||||
lucas_tbl.cal mersenne.cal mod.cal pell.cal pi.cal pix.cal \
|
||||
pollard.cal poly.cal psqrt.cal quat.cal regress.cal solve.cal \
|
||||
sumsq.cal surd.cal unitfrac.cal varargs.cal chrem.cal mfactor.cal \
|
||||
bindings randmprime.cal test1700.cal randrun.cal linear.cal \
|
||||
randbitrun.cal bernoulli.cal test2300.cal test2600.cal \
|
||||
test2700.cal test3100.cal test3300.cal test3400.cal prompt.cal \
|
||||
test3500.cal seedrandom.cal test4000.cal test4100.cal test4600.cal \
|
||||
beer.cal hello.cal test5100.cal test5200.cal randombitrun.cal \
|
||||
randomrun.cal repeat.cal xx_print.cal natnumset.cal qtime.cal \
|
||||
test8400.cal test8500.cal test8600.cal chi.cal intfile.cal screen.cal \
|
||||
dotest.cal set8700.cal set8700.line alg_config.cal sumtimes.cal \
|
||||
dms.cal hms.cal gvec.cal
|
||||
CALC_FILES= alg_config.cal beer.cal bernoulli.cal bernpoly.cal \
|
||||
bigprime.cal bindings brentsolve.cal chi.cal chrem.cal constants.cal \
|
||||
deg.cal dms.cal dotest.cal ellip.cal factorial2.cal factorial.cal \
|
||||
gvec.cal hello.cal hms.cal intfile.cal lambertw.cal linear.cal \
|
||||
lnseries.cal lucas.cal lucas_chk.cal lucas_tbl.cal mersenne.cal \
|
||||
mfactor.cal mod.cal natnumset.cal pell.cal pi.cal pix.cal pollard.cal \
|
||||
poly.cal prompt.cal psqrt.cal qtime.cal quat.cal randbitrun.cal \
|
||||
randmprime.cal randombitrun.cal randomrun.cal randrun.cal README \
|
||||
regress.cal repeat.cal screen.cal seedrandom.cal set8700.cal \
|
||||
set8700.line solve.cal specialfunctions.cal statistics.cal sumsq.cal \
|
||||
sumtimes.cal surd.cal test1700.cal test2300.cal test2600.cal \
|
||||
test2700.cal test3100.cal test3300.cal test3400.cal test3500.cal \
|
||||
test4000.cal test4100.cal test4600.cal test5100.cal test5200.cal \
|
||||
test8400.cal test8500.cal test8600.cal test8900.cal toomcook.cal \
|
||||
unitfrac.cal varargs.cal xx_print.cal zeta2.cal
|
||||
|
||||
# These files are found (but not built) in the distribution
|
||||
#
|
||||
@@ -293,7 +295,7 @@ install: all
|
||||
${RM} -f ${T}${CALC_SHAREDIR}/$$i.new; \
|
||||
${CP} -f $$i ${T}${CALC_SHAREDIR}/$$i.new; \
|
||||
${CHMOD} 0444 ${T}${CALC_SHAREDIR}/$$i.new; \
|
||||
${MV} -f ${T}${CALC_SHAREDIR}/$$i.new ${T}${CALC_SHAREDIR}/$$i; \
|
||||
${MV} -f ${T}${CALC_SHAREDIR}/$$i.new ${T}${CALC_SHAREDIR}/$$i;\
|
||||
echo "installed ${T}${CALC_SHAREDIR}/$$i"; \
|
||||
fi; \
|
||||
done
|
||||
|
@@ -17,8 +17,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.1 $
|
||||
* @(#) $Id: alg_config.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: alg_config.cal,v 30.2 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/alg_config.cal,v $
|
||||
*
|
||||
* Under source code control: 2006/06/07 14:10:11
|
||||
@@ -80,7 +80,8 @@ define mul_loop(repeat, x)
|
||||
len = sizeof((*x)[0]) / baseb_bytes;
|
||||
for (i=1; i < 4; ++i) {
|
||||
if ((sizeof((*x)[i]) / baseb_bytes) != len) {
|
||||
quit "mul_loop: 2nd arg matrix elements are not of equal BASEB-bit word length";
|
||||
quit "mul_loop: 2nd arg matrix elements are not of "
|
||||
"equal BASEB-bit word length";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -378,7 +379,8 @@ define best_mul2()
|
||||
}
|
||||
} while (ratio >= 1.0);
|
||||
if (config("user_debug") > 0) {
|
||||
printf("alg1/alg2 ratio now < 1.0, starting binary search between %d and %d\n",
|
||||
printf("alg1/alg2 ratio now < 1.0, starting binary search "
|
||||
"between %d and %d\n",
|
||||
low, high);
|
||||
}
|
||||
|
||||
@@ -472,7 +474,8 @@ define sq_loop(repeat, x)
|
||||
len = sizeof((*x)[0]) / baseb_bytes;
|
||||
for (i=1; i < 4; ++i) {
|
||||
if ((sizeof((*x)[i]) / baseb_bytes) != len) {
|
||||
quit "sq_loop: 2nd arg matrix elements are not of equal BASEB-bit word length";
|
||||
quit "sq_loop: 2nd arg matrix elements are not of equal "
|
||||
"BASEB-bit word length";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -769,7 +772,8 @@ define best_sq2()
|
||||
}
|
||||
} while (ratio >= 1.0);
|
||||
if (config("user_debug") > 0) {
|
||||
printf("alg1/alg2 ratio now < 1.0, starting binary search between %d and %d\n",
|
||||
printf("alg1/alg2 ratio now < 1.0, starting binary search "
|
||||
"between %d and %d\n",
|
||||
low, high);
|
||||
}
|
||||
|
||||
@@ -866,7 +870,8 @@ define pow_loop(repeat, x, ex)
|
||||
len = sizeof((*x)[0]) / baseb_bytes;
|
||||
for (i=1; i < 4; ++i) {
|
||||
if ((sizeof((*x)[i]) / baseb_bytes) != len) {
|
||||
quit "pow_loop: 2nd arg matrix elements are not of equal BASEB-bit word length";
|
||||
quit "pow_loop: 2nd arg matrix elements are not of "
|
||||
"equal BASEB-bit word length";
|
||||
}
|
||||
}
|
||||
if (!isint(ex) || ex < 3) {
|
||||
@@ -1151,7 +1156,8 @@ define best_pow2()
|
||||
if (config("user_debug") > 1) {
|
||||
printf(" pmod alg1/alg2 ratio = %.3f\n", ratio);
|
||||
if (ratio > 1.0 && ratio <= 1.02) {
|
||||
printf(" while alg1 is slightly better than alg2, it is not clearly better\n");
|
||||
printf(" while alg1 is slightly better than alg2, "
|
||||
"it is not clearly better\n");
|
||||
}
|
||||
}
|
||||
} while (ratio <= 1.02);
|
||||
@@ -1205,8 +1211,8 @@ define best_pow2()
|
||||
looped = 1;
|
||||
} while (ratio >= 1.0);
|
||||
if (config("user_debug") > 0) {
|
||||
printf("alg1/alg2 ratio now < 1.0, starting binary search between %d and %d\n",
|
||||
low, high);
|
||||
printf("alg1/alg2 ratio now < 1.0, starting binary search "
|
||||
"between %d and %d\n", low, high);
|
||||
}
|
||||
|
||||
/*
|
||||
|
59
cal/bernpoly.cal
Normal file
59
cal/bernpoly.cal
Normal file
@@ -0,0 +1,59 @@
|
||||
/*
|
||||
* bernpoly- Bernoully polynomials B_n(z) for arbitrary n,z..
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* bernpoly is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* bernpoly is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: bernpoly.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/bernpoly.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
read -once zeta2
|
||||
|
||||
|
||||
/* Idea by Don Zagier */
|
||||
define bernpoly(n,z){
|
||||
local h s c k;
|
||||
if(isint(n) && n>=0){
|
||||
h=0;s=0;c=-1;
|
||||
for(k=1;k<=n+1;k++){
|
||||
c*=1-(n+2)/k;
|
||||
s+=z^n;
|
||||
z++;
|
||||
h+=c*s/k;
|
||||
}
|
||||
return h;
|
||||
}
|
||||
else return -n*hurwitzzeta(1-n,z);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "bernpoly(n,z)";
|
||||
}
|
257
cal/brentsolve.cal
Normal file
257
cal/brentsolve.cal
Normal file
@@ -0,0 +1,257 @@
|
||||
/*
|
||||
* brentsolve- Root finding with the Brent-Dekker trick.
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* brentsolve is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* brentsolve is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: brentsolve.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/brentsolve.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/*
|
||||
A short explanation is at http://en.wikipedia.org/wiki/Brent%27s_method
|
||||
I tried to follow the description at wikipedia as much as possible to make
|
||||
the slight changes I did more visible.
|
||||
You may give http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.html a
|
||||
short glimpse (Brent's originl Fortran77 versions and some translations of
|
||||
it).
|
||||
*/
|
||||
|
||||
static true = 1;
|
||||
static false = 0;
|
||||
define brentsolve(low, high,eps){
|
||||
local a b c d fa fb fc fa2 fb2 fc2 s fs tmp tmp2 mflag i places;
|
||||
a = low;
|
||||
b = high;
|
||||
c = 0;
|
||||
|
||||
if(isnull(eps))
|
||||
eps = epsilon(epsilon()*1e-3);
|
||||
places = highbit(1 + int( 1/epsilon() ) ) + 1;
|
||||
|
||||
d = 1/eps;
|
||||
|
||||
fa = f(a);
|
||||
fb = f(b);
|
||||
|
||||
fc = 0;
|
||||
s = 0;
|
||||
fs = 0;
|
||||
|
||||
if(fa * fb >= 0){
|
||||
if(fa < fb){
|
||||
epsilon(eps);
|
||||
return a;
|
||||
}
|
||||
else{
|
||||
epsilon(eps);
|
||||
return b;
|
||||
}
|
||||
}
|
||||
|
||||
if(abs(fa) < abs(fb)){
|
||||
tmp = a; a = b; b = tmp;
|
||||
tmp = fa; fa = fb; fb = tmp;
|
||||
}
|
||||
|
||||
c = a;
|
||||
fc = fa;
|
||||
mflag = 1;
|
||||
i = 0;
|
||||
|
||||
while(!(fb==0) && (abs(a-b) > eps)){
|
||||
if((fa != fc) && (fb != fc)){
|
||||
/* Inverse quadratic interpolation*/
|
||||
fc2 = fc^2;
|
||||
fa2 = fa^2;
|
||||
s = bround(((fb^2*((fc*a)-(c*fa)))+(fb*((c*fa2)-(fc2*a)))+(b*((fc2*fa)
|
||||
-(fc*fa2))))/((fc - fb)*(fa - fb)*(fc - fa)),places++);
|
||||
}
|
||||
else{
|
||||
/* Secant Rule*/
|
||||
s =bround( b - fb * (b - a) / (fb - fa),places++);
|
||||
}
|
||||
tmp2 = (3 * a + b) / 4;
|
||||
if( (!( ((s > tmp2) && (s < b))||((s < tmp2) && (s > b))))
|
||||
|| (mflag && (abs(s - b) >= (abs(b - c) / 2)))
|
||||
|| (!mflag && (abs(s - b) >= (abs(c - d) / 2)))) {
|
||||
s = (a + b) / 2;
|
||||
mflag = true;
|
||||
}
|
||||
else{
|
||||
if( (mflag && (abs(b - c) < eps))
|
||||
|| (!mflag && (abs(c - d) < eps))) {
|
||||
s = (a + b) / 2;
|
||||
mflag = true;
|
||||
}
|
||||
else
|
||||
mflag = false;
|
||||
}
|
||||
fs = f(s);
|
||||
c = b;
|
||||
fc = fb;
|
||||
if (fa * fs < 0){
|
||||
b = s;
|
||||
fb = fs;
|
||||
}
|
||||
else {
|
||||
a = s;
|
||||
fa = fs;
|
||||
}
|
||||
|
||||
if (abs(fa) < abs(fb)){
|
||||
tmp = a; a = b; b = tmp;
|
||||
tmp = fa; fa = fb; fb = tmp;
|
||||
}
|
||||
i++;
|
||||
if (i > 1000){
|
||||
epsilon(eps);
|
||||
return newerror("brentsolve: does not converge");
|
||||
}
|
||||
}
|
||||
epsilon(eps);
|
||||
return b;
|
||||
}
|
||||
|
||||
/*
|
||||
A variation of the solver to accept functions named differently from "f". The
|
||||
code should explain it.
|
||||
*/
|
||||
define brentsolve2(low, high,which,eps){
|
||||
local a b c d fa fb fc fa2 fb2 fc2 s fs tmp tmp2 mflag i places;
|
||||
a = low;
|
||||
b = high;
|
||||
c = 0;
|
||||
|
||||
switch(param(0)){
|
||||
case 0:
|
||||
case 1: return newerror("brentsolve2: not enough argments");
|
||||
case 2: eps = epsilon(epsilon()*1e-2);
|
||||
which = 0;break;
|
||||
case 3: eps = epsilon(epsilon()*1e-2);break;
|
||||
default: break;
|
||||
};
|
||||
places = highbit(1 + int(1/epsilon())) + 1;
|
||||
|
||||
d = 1/eps;
|
||||
|
||||
switch(which){
|
||||
case 1: fa = __CZ__invbeta(a);
|
||||
fb = __CZ__invbeta(b); break;
|
||||
case 2: fa = __CZ__invincgamma(a);
|
||||
fb = __CZ__invincgamma(b); break;
|
||||
|
||||
default: fa = f(a);fb = f(b); break;
|
||||
};
|
||||
|
||||
fc = 0;
|
||||
s = 0;
|
||||
fs = 0;
|
||||
|
||||
if(fa * fb >= 0){
|
||||
if(fa < fb)
|
||||
return a;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
if(abs(fa) < abs(fb)){
|
||||
tmp = a; a = b; b = tmp;
|
||||
tmp = fa; fa = fb; fb = tmp;
|
||||
}
|
||||
|
||||
c = a;
|
||||
fc = fa;
|
||||
mflag = 1;
|
||||
i = 0;
|
||||
|
||||
while(!(fb==0) && (abs(a-b) > eps)){
|
||||
|
||||
if((fa != fc) && (fb != fc)){
|
||||
/* Inverse quadratic interpolation*/
|
||||
fc2 = fc^2;
|
||||
fa2 = fa^2;
|
||||
s = bround(((fb^2*((fc*a)-(c*fa)))+(fb*((c*fa2)-(fc2*a)))+(b*((fc2*fa)
|
||||
-(fc*fa2))))/((fc - fb)*(fa - fb)*(fc - fa)),places);
|
||||
places++;
|
||||
}
|
||||
else{
|
||||
/* Secant Rule*/
|
||||
s =bround( b - fb * (b - a) / (fb - fa),places);
|
||||
places++;
|
||||
}
|
||||
tmp2 = (3 * a + b) / 4;
|
||||
if( (!( ((s > tmp2) && (s < b))||((s < tmp2) && (s > b))))
|
||||
|| (mflag && (abs(s - b) >= (abs(b - c) / 2)))
|
||||
|| (!mflag && (abs(s - b) >= (abs(c - d) / 2)))) {
|
||||
s = (a + b) / 2;
|
||||
mflag = true;
|
||||
}
|
||||
else{
|
||||
if( (mflag && (abs(b - c) < eps))
|
||||
|| (!mflag && (abs(c - d) < eps))) {
|
||||
s = (a + b) / 2;
|
||||
mflag = true;
|
||||
}
|
||||
else
|
||||
mflag = false;
|
||||
}
|
||||
switch(which){
|
||||
case 1: fs = __CZ__invbeta(s); break;
|
||||
case 2: fs = __CZ__invincgamma(s); break;
|
||||
|
||||
default: fs = f(s); break;
|
||||
};
|
||||
c = b;
|
||||
fc = fb;
|
||||
if (fa * fs < 0){
|
||||
b = s;
|
||||
fb = fs;
|
||||
}
|
||||
else {
|
||||
a = s;
|
||||
fa = fs;
|
||||
}
|
||||
|
||||
if (abs(fa) < abs(fb)){
|
||||
tmp = a; a = b; b = tmp;
|
||||
tmp = fa; fa = fb; fb = tmp;
|
||||
}
|
||||
i++;
|
||||
if (i > 1000){
|
||||
return newerror("brentsolve2: does not converge");
|
||||
}
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "brentsolve(low, high,eps)";
|
||||
print "brentsolve2(low, high,which,eps)";
|
||||
}
|
104
cal/constants.cal
Normal file
104
cal/constants.cal
Normal file
@@ -0,0 +1,104 @@
|
||||
/*
|
||||
* constants - implementation of different constants to arbitrary precision
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* constants is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* constants is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: constants.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/constants.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
static __CZ__euler_mascheroni = 0;
|
||||
static __CZ__euler_mascheroni_prec = 0;
|
||||
|
||||
|
||||
define e(){
|
||||
local k temp1 temp2 ret eps factor upperlimit prec;
|
||||
|
||||
prec = digits(1/epsilon());
|
||||
if(__CZ__euler_mascheroni != 0 && __CZ__euler_mascheroni_prec >= prec)
|
||||
return __CZ__euler_mascheroni;
|
||||
if(prec<=20) return 2.718281828459045235360287471;
|
||||
if(prec<=1800){
|
||||
__CZ__euler_mascheroni = exp(1);
|
||||
__CZ__euler_mascheroni_prec = prec;
|
||||
}
|
||||
|
||||
eps=epsilon(1e-20);
|
||||
factor = 1;
|
||||
k = 0;
|
||||
upperlimit = prec * ln(10);
|
||||
while(k<upperlimit){
|
||||
k += ln(factor);
|
||||
factor++;
|
||||
}
|
||||
epsilon(eps);
|
||||
temp1 = 0;
|
||||
ret = 1;
|
||||
for(k=3;k<=factor;k++){
|
||||
temp2 = temp1;
|
||||
temp1 = ret;
|
||||
ret = (k-1) *(temp1 + temp2);
|
||||
}
|
||||
|
||||
ret = inverse( ret * inverse(factorial(factor) ) ) ;
|
||||
__CZ__euler_mascheroni = ret;
|
||||
__CZ__euler_mascheroni_prec = prec;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/* Lupas' series */
|
||||
static __CZ__catalan = 0;
|
||||
static __CZ__catalan_prec = 0;
|
||||
define G(){
|
||||
local eps a s t n;
|
||||
eps = epsilon(epsilon()*1e-10);
|
||||
if(__CZ__catalan != 0 && __CZ__catalan >= log(1/eps))
|
||||
return __CZ__catalan;
|
||||
a = 1;
|
||||
s = 0;
|
||||
t = 1;
|
||||
n = 1;
|
||||
while(abs(t)> eps){
|
||||
a *= 32 * n^3 * (2*n-1);
|
||||
a /=((3-16*n+16*n^2)^2);
|
||||
t = a * (-1)^(n-1) * (40*n^2-24*n+3) / (n^3 * (2*n-1));
|
||||
s += t;
|
||||
n += 1;
|
||||
}
|
||||
s = s/64;
|
||||
__CZ__catalan = s;
|
||||
__CZ__catalan_prec = log(1/eps);
|
||||
epsilon(eps);
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "e()";
|
||||
print "G()";
|
||||
}
|
204
cal/factorial.cal
Normal file
204
cal/factorial.cal
Normal file
@@ -0,0 +1,204 @@
|
||||
/*
|
||||
* factorial - implementation of different algorithms for the factorial
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* factorial is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* factorial is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: factorial.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/factorial.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* hide internal function from resource debugging
|
||||
*/
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/*
|
||||
get dependencies
|
||||
*/
|
||||
read -once toomcook;
|
||||
|
||||
|
||||
/* A simple list to keep things...uhm...simple?*/
|
||||
static __CZ__primelist = list();
|
||||
|
||||
/* Helper for primorial: fill list with primes in range a,b */
|
||||
define __CZ__fill_prime_list(a,b)
|
||||
{
|
||||
local k;
|
||||
k=a;
|
||||
if(isprime(k))k--;
|
||||
while(1){
|
||||
k = nextprime(k);
|
||||
if(k > b) break;
|
||||
append(__CZ__primelist,k );
|
||||
}
|
||||
}
|
||||
|
||||
/* Helper for factorial: how often prime p divides the factorial of n */
|
||||
define __CZ__prime_divisors(n,p)
|
||||
{
|
||||
local q,m;
|
||||
q = n;
|
||||
m = 0;
|
||||
if (p > n) return 0;
|
||||
if (p > n/2) return 1;
|
||||
while (q >= p) {
|
||||
q = q//p;
|
||||
m += q;
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
/*
|
||||
Wrapper. Please set cut-offs to own taste and hardware.
|
||||
*/
|
||||
define factorial(n){
|
||||
local prime result shift prime_list k k1 k2 expo_list pix cut primorial;
|
||||
|
||||
result = 1;
|
||||
prime = 2;
|
||||
|
||||
if(!isint(n)) {
|
||||
return newerror("factorial(n): n is not an integer"); ## or gamma(n)?
|
||||
}
|
||||
if(n < 0) return newerror("factorial(n): n < 0");
|
||||
if(n < 9000 && !isdefined("test8900")) {
|
||||
## builtin is implemented with splitting but only with
|
||||
## Toom-Cook 2 (by Karatsuba (the father))
|
||||
return n!;
|
||||
}
|
||||
|
||||
shift = __CZ__prime_divisors(n,prime);
|
||||
prime = 3;
|
||||
cut = n//2;
|
||||
pix = pix(cut);
|
||||
prime_list = mat[pix];
|
||||
expo_list = mat[pix];
|
||||
|
||||
k = 0;
|
||||
/*
|
||||
Peter Borwein's algorithm
|
||||
|
||||
@Article{journals/jal/Borwein85,
|
||||
author = {Borwein, Peter B.},
|
||||
title = {On the Complexity of Calculating Factorials.},
|
||||
journal = {J. Algorithms},
|
||||
year = {1985},
|
||||
number = {3},
|
||||
url = {http://dblp.uni-trier.de/db/journals/jal/jal6.html#Borwein85}
|
||||
*/
|
||||
|
||||
do {
|
||||
prime_list[k] = prime;
|
||||
expo_list[k++] = __CZ__prime_divisors(n,prime);
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= cut);
|
||||
|
||||
/* size of the largest exponent in bits */
|
||||
k1 = highbit(expo_list[0]);
|
||||
k2 = size(prime_list)-1;
|
||||
|
||||
for(;k1>=0;k1--){
|
||||
/*
|
||||
the cut-off for T-C-4 ist still to low, using T-C-3 here
|
||||
TODO: check cutoffs
|
||||
*/
|
||||
result = toomcook3square(result);
|
||||
/*
|
||||
almost all time is spend in this loop, so cutting of the
|
||||
upper half of the primes makes sense
|
||||
*/
|
||||
for(k=0; k<=k2; k++) {
|
||||
if((expo_list[k] & (1 << k1)) != 0) {
|
||||
result *= prime_list[k];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
primorial = primorial( cut, n);
|
||||
result *= primorial;
|
||||
result <<= shift;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Helper for primorial: do the product with binary splitting
|
||||
TODO: do it without the intermediate list
|
||||
*/
|
||||
define __CZ__primorial__lowlevel( a, b ,p)
|
||||
{
|
||||
local c;
|
||||
if( b == a) return p ;
|
||||
if( b-a > 1){
|
||||
c= (b + a) >> 1;
|
||||
return __CZ__primorial__lowlevel( a , c , __CZ__primelist[a] )
|
||||
* __CZ__primorial__lowlevel( c+1 , b , __CZ__primelist[b] ) ;
|
||||
}
|
||||
return __CZ__primelist[a] * __CZ__primelist[b];
|
||||
}
|
||||
|
||||
/*
|
||||
Primorial, Product of consecutive primes in range a,b
|
||||
|
||||
Originally meant to do primorials with a start different from 2, but
|
||||
found out that this is faster at about a=1,b>=10^5 than the builtin
|
||||
function pfact(). With the moderately small list a=1,b=10^6 (78498
|
||||
primes) it is 3 times faster. A quick look-up showed what was already
|
||||
guessed: pfact() does it linearly. (BTW: what is the time complexity
|
||||
of the primorial with the naive algorithm?)
|
||||
*/
|
||||
define primorial(a,b)
|
||||
{
|
||||
local C1 C2;
|
||||
if(!isint(a)) return newerror("primorial(a,b): a is not an integer");
|
||||
else if(!isint(b)) return newerror("primorial(a,b): b is not an integer");
|
||||
else if(a < 0) return newerror("primorial(a,b): a < 0");
|
||||
else if( b < 2 ) return newerror("primorial(a,b): b < 2");
|
||||
else if( b < a) return newerror("primorial(a,b): b < a");
|
||||
else{
|
||||
/* last prime < 2^32 is also max. prime for nextprime()*/
|
||||
if(b >= 4294967291) return newerror("primorial(a,b): max. prime exceeded");
|
||||
if(b == 2) return 2;
|
||||
/*
|
||||
Can be extended by way of pfact(b)/pfact(floor(a-1/2)) for small a
|
||||
*/
|
||||
if(a<=2 && b < 10^5) return pfact(b);
|
||||
/* TODO: use pix() and a simple array (mat[])instead*/
|
||||
__CZ__primelist = list();
|
||||
__CZ__fill_prime_list(a,b);
|
||||
C1 = size(__CZ__primelist)-1;
|
||||
return __CZ__primorial__lowlevel( 0, C1,1)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
* report important interface functions
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "factorial(n)";
|
||||
print "primorial(a, b)";
|
||||
}
|
723
cal/factorial2.cal
Normal file
723
cal/factorial2.cal
Normal file
@@ -0,0 +1,723 @@
|
||||
/*
|
||||
* factorial2 - implementation of different factorial related functions
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* factorial2 is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* factorial2 is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with factorial2 under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: factorial2.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/factorial2.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* hide internal function from resource debugging
|
||||
*/
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/*
|
||||
get dependencies
|
||||
*/
|
||||
read -once factorial toomcook specialfunctions;
|
||||
|
||||
|
||||
/*
|
||||
Factorize a factorial and put the result in a 2-column matrix with pi(n) rows
|
||||
mat[ primes , exponent ]
|
||||
Result can be restricted to start at a prime different from 2 with the second
|
||||
argument "start". That arguments gets taken at face value if it prime and
|
||||
smaller than n, otherwise the next larger prime is taken if that prime is
|
||||
smaller than n.
|
||||
*/
|
||||
|
||||
define __CZ__factor_factorial(n,start){
|
||||
local prime prime_list k pix stop;
|
||||
|
||||
|
||||
if(!isint(n)) return
|
||||
newerror("__CZ__factor_factorial(n,start): n is not integer");
|
||||
if(n < 0) return newerror("__CZ__factor_factorial(n,start): n < 0");
|
||||
if(n == 1) return newerror("__CZ__factor_factorial(n,start): n == 1");
|
||||
|
||||
if(start){
|
||||
if(!isint(start) && start < 0 && start > n)
|
||||
return newerror("__CZ__factor_factorial(n,start): value of "
|
||||
"parameter 'start' out of range");
|
||||
if(start == n && isprime(n)){
|
||||
prime_list = mat[1 , 2];
|
||||
prime_list[0,0] = n;
|
||||
prime_list[0,1] = 1;
|
||||
}
|
||||
else if(!isprime(start) && nextprime(start) >n)
|
||||
return newerror("__CZ__factor_factorial(n,start): value of parameter "
|
||||
"'start' out of range");
|
||||
else{
|
||||
if(!isprime(start)) prime = nextprime(start);
|
||||
else prime = start;
|
||||
}
|
||||
}
|
||||
else
|
||||
prime = 2;
|
||||
|
||||
pix = pix(n);
|
||||
if(start){
|
||||
pix -= pix(prime) -1;
|
||||
}
|
||||
prime_list = mat[pix , 2];
|
||||
|
||||
k = 0;
|
||||
|
||||
do {
|
||||
prime_list[k ,0] = prime;
|
||||
prime_list[k++,1] = __CZ__prime_divisors(n,prime);
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= n);
|
||||
|
||||
return prime_list;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
subtracts exponents of n_1! from exponents of n_2! with n_1<=n_2
|
||||
|
||||
Does not check for size or consecutiveness of the primes or a carry
|
||||
*/
|
||||
|
||||
define __CZ__subtract_factored_factorials(matrix_2n,matrix_n){
|
||||
local k ret len1,len2,tmp count p e;
|
||||
len1 = size(matrix_n)/2;
|
||||
len2 = size(matrix_2n)/2;
|
||||
if(len2<len1){
|
||||
|
||||
swap(len1,len2);
|
||||
tmp = matrix_n;
|
||||
matrix_n = matrix_2n;
|
||||
matrix_2n = tmp;
|
||||
}
|
||||
tmp = mat[len1,2];
|
||||
k = 0;
|
||||
|
||||
for(;k<len1;k++){
|
||||
p = matrix_2n[k,0];
|
||||
e = matrix_2n[k,1] - matrix_n[k,1];
|
||||
if(e!=0){
|
||||
tmp[count ,0] = p;
|
||||
tmp[count++,1] = e;
|
||||
}
|
||||
}
|
||||
ret = mat[count + (len2-len1),2];
|
||||
for(k=0;k<count;k++){
|
||||
ret[k,0] = tmp[k,0];
|
||||
ret[k,1] = tmp[k,1];
|
||||
}
|
||||
|
||||
free(tmp);
|
||||
for(k=len1;k<len2;k++){
|
||||
ret[count,0] = matrix_2n[k,0];
|
||||
ret[count++,1] = matrix_2n[k,1];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
adds exponents of n_1! to exponents of n_2! with n_1<=n_2
|
||||
|
||||
Does not check for size or consecutiveness of the primes or a carry
|
||||
*/
|
||||
|
||||
define __CZ__add_factored_factorials(matrix_2n,matrix_n){
|
||||
local k ret len1,len2,tmp;
|
||||
len1 = size(matrix_n)/2;
|
||||
len2 = size(matrix_2n)/2;
|
||||
if(len2<len1){
|
||||
swap(len1,len2);
|
||||
tmp = matrix_n;
|
||||
matrix_n = matrix_2n;
|
||||
matrix_2n = tmp;
|
||||
}
|
||||
ret = mat[len2,2];
|
||||
k = 0;
|
||||
for(;k<len1;k++){
|
||||
ret[k,0] = matrix_2n[k,0];
|
||||
ret[k,1] = matrix_2n[k,1] + matrix_n[k,1];
|
||||
}
|
||||
for(;k<len2;k++){
|
||||
ret[k,0] = matrix_2n[k,0];
|
||||
ret[k,1] = matrix_2n[k,1];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
Does not check if all exponents are positive
|
||||
|
||||
|
||||
timings
|
||||
this comb comb-this rel. k/n
|
||||
; benchmark_binomial(10,13)
|
||||
n=2^13 k=2^10 0.064004 0.016001 + 0.76923076923076923077
|
||||
n=2^13 k=2^11 0.064004 0.048003 + 0.84615384615384615385
|
||||
n=2^13 k=2^12 0.068004 0.124008 - 0.92307692307692307692
|
||||
; benchmark_binomial(10,15)
|
||||
n=2^15 k=2^10 0.216014 0.024001 + 0.66666666666666666667
|
||||
n=2^15 k=2^11 0.220014 0.064004 + 0.73333333333333333333
|
||||
n=2^15 k=2^12 0.228014 0.212014 + 0.8
|
||||
n=2^15 k=2^13 0.216013 0.664042 - 0.86666666666666666667
|
||||
n=2^15 k=2^14 0.240015 1.868117 - 0.93333333333333333333
|
||||
; benchmark_binomial(11,15)
|
||||
n=2^15 k=2^11 0.216014 0.068004 + 0.73333333333333333333
|
||||
n=2^15 k=2^12 0.236015 0.212013 + 0.8
|
||||
n=2^15 k=2^13 0.216013 0.656041 - 0.86666666666666666667
|
||||
n=2^15 k=2^14 0.244016 1.872117 - 0.93333333333333333333
|
||||
; benchmark_binomial(11,18)
|
||||
n=2^18 k=2^11 1.652103 0.100006 + 0.61111111111111111111
|
||||
n=2^18 k=2^12 1.608101 0.336021 + 0.66666666666666666667
|
||||
n=2^18 k=2^13 1.700106 1.140071 + 0.72222222222222222222
|
||||
n=2^18 k=2^14 1.756109 3.924245 - 0.77777777777777777778
|
||||
n=2^18 k=2^15 2.036127 13.156822 - 0.83333333333333333333
|
||||
n=2^18 k=2^16 2.172135 41.974624 - 0.88888888888888888889
|
||||
n=2^18 k=2^17 2.528158 121.523594 - 0.94444444444444444444
|
||||
; benchmark_binomial(15,25)
|
||||
n=2^25 k=2^15 303.790985 38.266392 + 0.6
|
||||
; benchmark_binomial(17,25)
|
||||
n=2^25 k=2^17 319.127944 529.025062 - 0.68
|
||||
*/
|
||||
|
||||
define benchmark_binomial(s,limit){
|
||||
local ret k A B T1 T2 start end N K;
|
||||
N = 2^(limit);
|
||||
for(k=s;k<limit;k++){
|
||||
K = 2^k;
|
||||
start=usertime();A=binomial(N,K);end=usertime();
|
||||
T1 = end-start;
|
||||
start=usertime();B=comb(N,K);end=usertime();
|
||||
T2 = end-start;
|
||||
print "n=2^"limit,"k=2^"k," ",T1," ",T2,T1<T2?"-":"+"," "k/limit;
|
||||
if(A!=B){
|
||||
print "false";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
define __CZ__multiply_factored_factorial(matrix,stop){
|
||||
local prime result shift prime_list k k1 k2 expo_list pix count start;
|
||||
local hb flag;
|
||||
|
||||
result = 1;
|
||||
shift = 0;
|
||||
|
||||
|
||||
if(!ismat(matrix))
|
||||
return newerror("__CZ__multiply_factored_factorial(matrix): "
|
||||
"argument matrix not a matrix ");
|
||||
if(!matrix[0,0])
|
||||
return
|
||||
newerror("__CZ__multiply_factored_factorial(matrix): "
|
||||
"matrix[0,0] is null/0");
|
||||
|
||||
if(!isnull(stop))
|
||||
pix = stop;
|
||||
else
|
||||
pix = size(matrix)/2-1;
|
||||
|
||||
if(matrix[0,0] == 2 && matrix[0,1] > 0){
|
||||
shift = matrix[0,1];
|
||||
if(pix-1 == 0)
|
||||
return 2^matrix[0,1];
|
||||
}
|
||||
|
||||
/*
|
||||
This is a more general way to do the multiplication, so any optimization
|
||||
must have been done by the caller.
|
||||
*/
|
||||
k = 0;
|
||||
/*
|
||||
The size of the largest exponent in bits is calculated dynamically.
|
||||
Can be done more elegantly and saves one run over the whole array if done
|
||||
inside the main loop.
|
||||
*/
|
||||
hb =0;
|
||||
for(k=0;k<pix;k++){
|
||||
k1=highbit(matrix[k,1]);
|
||||
if(hb < k1)hb=k1;
|
||||
}
|
||||
|
||||
k2 = pix;
|
||||
start = 0;
|
||||
if(shift) start++;
|
||||
|
||||
for(k1=hb;k1>=0;k1--){
|
||||
/*
|
||||
the cut-off for T-C-4 ist still too low, using T-C-3 here
|
||||
TODO: check cutoffs
|
||||
*/
|
||||
result = toomcook3square(result);
|
||||
|
||||
for(k=start; k<=k2; k++) {
|
||||
if((matrix[k,1] & (1 << k1)) != 0) {
|
||||
result *= matrix[k,0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result <<= shift;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Compute binomial coeficients n!/(k!(n-k)!)
|
||||
|
||||
One of the rare cases where a formula once meant to ease manual computation
|
||||
is actually the (aymptotically) fastest way to do it (in July 2013) for
|
||||
the extreme case binomial(2N,N) but for a high price, the memory
|
||||
needed is pi(N)--theoretically.
|
||||
*/
|
||||
define binomial(n,k){
|
||||
local ret factored_n factored_k factored_nk denom num quot K prime_list prime;
|
||||
local pix diff;
|
||||
|
||||
if(!isint(n) || !isint(k))
|
||||
return newerror("binomial(n,k): input is not integer");
|
||||
if(n<0 || k<0)
|
||||
return newerror("binomial(n,k): input is not >= 0"); ;
|
||||
if(n<k ) return 0;
|
||||
if(n==k) return 1;
|
||||
if(k==0) return 1;
|
||||
if(k==1) return n;
|
||||
if(n-k==1) return n;
|
||||
/*
|
||||
cut-off depends on real size of n,k and size of n/k
|
||||
The current cut-off is to small for large n, e.g.:
|
||||
for 2n=2^23, k=n-n/2 the quotient is q=2n/k=0.25. Empirical tests showed
|
||||
that 2n=2^23 and k=2^16 with q=0.0078125 are still faster than the
|
||||
builtin function.
|
||||
|
||||
The symmetry (n,k) = (n,n-k) is of not much advantage here. One way
|
||||
might be to get closer to k=n/2 if k<n-k but only if the difference
|
||||
is small and n very large.
|
||||
*/
|
||||
if(n<2e4 && !isdefined("test8900")) return comb(n,k);
|
||||
if(n<2e4 && k< n-n/2 && !isdefined("test8900")) return comb(n,k);
|
||||
/*
|
||||
This should be done in parallel to save some memory, e.g. no temporary
|
||||
arrays are needed, all can be done inline.
|
||||
The theoretical memory needed is pi(k).
|
||||
Which is still a lot.
|
||||
*/
|
||||
|
||||
prime = 2;
|
||||
pix = pix(n);
|
||||
prime_list = mat[pix , 2];
|
||||
K = 0;
|
||||
do {
|
||||
prime_list[K ,0] = prime;
|
||||
diff = __CZ__prime_divisors(n,prime)-
|
||||
( __CZ__prime_divisors(n-k,prime)+__CZ__prime_divisors(k,prime));
|
||||
if(diff != 0)
|
||||
prime_list[K++,1] = diff;
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= k);
|
||||
|
||||
do {
|
||||
prime_list[K ,0] = prime;
|
||||
diff = __CZ__prime_divisors(n,prime)-__CZ__prime_divisors(n-k,prime);
|
||||
if(diff != 0)
|
||||
prime_list[K++,1] = diff;
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= n-k);
|
||||
|
||||
do {
|
||||
prime_list[K ,0] = prime;
|
||||
prime_list[K++,1] = __CZ__prime_divisors(n,prime);
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= n);
|
||||
##print K,pix(k),pix(n-k),pix(n);
|
||||
##factored_k = __CZ__factor_factorial(k,1);
|
||||
##factored_nk = __CZ__factor_factorial(n-k,1);
|
||||
|
||||
##denom = __CZ__add_factored_factorials(factored_k,factored_nk);
|
||||
##free(factored_k,factored_nk);
|
||||
##num = __CZ__factor_factorial(n,1);
|
||||
##quot = __CZ__subtract_factored_factorials( num , denom );
|
||||
##free(num,denom);
|
||||
|
||||
ret = __CZ__multiply_factored_factorial(`prime_list,K-1);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
Compute large catalan numbers C(n) = binomial(2n,n)/(n+1) with
|
||||
cut-off: (n>5e4)
|
||||
Needs a lot of memory.
|
||||
*/
|
||||
define bigcatalan(n){
|
||||
if(!isint(n) )return newerror("bigcatalan(n): n is not integer");
|
||||
if( n<0) return newerror("bigcatalan(n): n < 0");
|
||||
if( n<5e4 && !isdefined("test8900") ) return catalan(n);
|
||||
return binomial(2*n,n)/(n+1);
|
||||
}
|
||||
|
||||
/*
|
||||
df(-111) = -1/3472059605858239446587523014902616804783337112829102414124928
|
||||
7753332469144201839599609375
|
||||
|
||||
df(-3+1i) = 0.12532538977287649201-0.0502372106177184607i
|
||||
df(2n + 1) = (2*n)!/(n!*2^n)
|
||||
*/
|
||||
define __CZ__double_factorial(n){
|
||||
local n1 n2 diff prime pix K prime_list k;
|
||||
prime = 3;
|
||||
pix = pix(2*n)+1;
|
||||
prime_list = mat[pix , 2];
|
||||
K = 0;
|
||||
do {
|
||||
prime_list[K ,0] = prime;
|
||||
diff = __CZ__prime_divisors(2*n,prime)-( __CZ__prime_divisors(n,prime));
|
||||
if(diff != 0)
|
||||
prime_list[K++,1] = diff;
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= n);
|
||||
do {
|
||||
prime_list[K ,0] = prime;
|
||||
prime_list[K++,1] = __CZ__prime_divisors(2*n,prime);
|
||||
prime = nextprime(prime);
|
||||
}while(prime <= 2*n);
|
||||
return __CZ__multiply_factored_factorial(prime_list,K);
|
||||
/*
|
||||
n1=__CZ__factor_factorial(2*n,1);
|
||||
n1[0,1] = n1[0,1]-n;
|
||||
n2=__CZ__factor_factorial(n,1);
|
||||
diff=__CZ__subtract_factored_factorials( n1 , n2 );
|
||||
return __CZ__multiply_factored_factorial(diff);
|
||||
*/
|
||||
}
|
||||
|
||||
##1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075,
|
||||
##13749310575, 316234143225, 7905853580625, 213458046676875,
|
||||
##6190283353629375, 191898783962510625, 6332659870762850625,
|
||||
##221643095476699771875, 8200794532637891559375
|
||||
|
||||
## 1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560,
|
||||
##3715891200, 81749606400, 1961990553600, 51011754393600,
|
||||
##1428329123020800, 42849873690624000, 1371195958099968000,
|
||||
##46620662575398912000, 1678343852714360832000, 63777066403145711616000
|
||||
define doublefactorial(n){
|
||||
local n1 n2 diff eps ret;
|
||||
if(!isint(n) ){
|
||||
/*
|
||||
Probably one of the not-so-good ideas. See result of
|
||||
http://www.wolframalpha.com/input/?i=doublefactorial%28a%2Bbi%29
|
||||
*/
|
||||
eps=epsilon(epsilon()*1e-2);
|
||||
ret = 2^(n/2-1/4 * cos(pi()* n)+1/4) * pi()^(1/4 *
|
||||
cos(pi()* n)-1/4)* gamma(n/2+1);
|
||||
epsilon(eps);
|
||||
return ret;
|
||||
}
|
||||
if(n==2) return 2;
|
||||
if(n==3) return 3;
|
||||
switch(n){
|
||||
case -1:
|
||||
case 0 : return 1;break;
|
||||
case 2 : return 2;break;
|
||||
case 3 : return 3;break;
|
||||
case 4 : return 8;break;
|
||||
default: break;
|
||||
}
|
||||
if(isodd(n)){
|
||||
/*
|
||||
TODO: find reasonable cutoff
|
||||
df(2n + 1) = (2*n)!/(n!*2^n)
|
||||
*/
|
||||
if(n>0){
|
||||
n = (n+1)//2;
|
||||
return __CZ__double_factorial(n);
|
||||
}
|
||||
else{
|
||||
if(n == -3 ) return -1;
|
||||
n = ((-n)-1)/2;
|
||||
return ((-1)^-n)/__CZ__double_factorial(n);
|
||||
}
|
||||
}
|
||||
else{
|
||||
/*
|
||||
I'm undecided here. The formula for complex n is valid for the negative
|
||||
integers, too.
|
||||
*/
|
||||
n = n>>1;
|
||||
if(n>0){
|
||||
if(!isdefined("test8900"))
|
||||
return factorial(n)<<n;
|
||||
else
|
||||
return n!<<n;
|
||||
}
|
||||
else
|
||||
return newerror("doublefactorial(n): even(n) < 0");
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Algorithm 3.17,
|
||||
Donald Kreher and Douglas Simpson,
|
||||
Combinatorial Algorithms,
|
||||
CRC Press, 1998, page 89.
|
||||
*/
|
||||
static __CZ__stirling1;
|
||||
static __CZ__stirling1_n = -1;
|
||||
static __CZ__stirling1_m = -1;
|
||||
|
||||
define stirling1(n,m){
|
||||
local i j k;
|
||||
if(n<0)return newerror("stirling1(n,m): n <= 0");
|
||||
if(m<0)return newerror("stirling1(n,m): m < 0");
|
||||
if(n<m) return 0;
|
||||
if(n==m) return 1;
|
||||
if(m==0 || n==0) return 0;
|
||||
/* We always use the list */
|
||||
/*
|
||||
if(m=1){
|
||||
if(iseven(n)) return -factorial(n-1);
|
||||
else return factorial(n-1);
|
||||
}
|
||||
if(m == n-1){
|
||||
if(iseven(n)) return -binomial(n,2);
|
||||
else return -binomial(n,2);
|
||||
}
|
||||
*/
|
||||
if(__CZ__stirling1_n >= n && __CZ__stirling1_m >= m){
|
||||
return __CZ__stirling1[n,m];
|
||||
}
|
||||
else{
|
||||
__CZ__stirling1 = mat[n+1,m+1];
|
||||
__CZ__stirling1[0,0] = 1;
|
||||
for(i=1;i<=n;i++)
|
||||
__CZ__stirling1[i,0] = 0;
|
||||
for(i=1;i<=n;i++){
|
||||
for(j=1;j<=m;j++){
|
||||
if(j<=i){
|
||||
__CZ__stirling1[i, j] = __CZ__stirling1[i - 1, j - 1] - (i - 1)\
|
||||
* __CZ__stirling1[i - 1, j];
|
||||
}
|
||||
else{
|
||||
__CZ__stirling1[i, j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
__CZ__stirling1_n = n;
|
||||
__CZ__stirling1_m = m;
|
||||
return __CZ__stirling1[n,m];
|
||||
}
|
||||
}
|
||||
|
||||
define stirling2(n,m){
|
||||
local k sum;
|
||||
if(n<0)return newerror("stirling2(n,m): n < 0");
|
||||
if(m<0)return newerror("stirling2(n,m): m < 0");
|
||||
if(n<m) return 0;
|
||||
if(n==0 && n!=m) return 0;
|
||||
if(n==m) return 1;
|
||||
if(m==0 )return 0;
|
||||
if(m==1) return 1;
|
||||
if(m==2) return 2^(n-1)-1;
|
||||
/*
|
||||
There are different methods to speed up alternating sums.
|
||||
This one doesn't.
|
||||
*/
|
||||
if(isdefined("test8900")){
|
||||
for(k=0;k<=m;k++){
|
||||
sum += (-1)^(m-k)*comb(m,k)*k^n;
|
||||
}
|
||||
return sum/(m!);
|
||||
}
|
||||
else{
|
||||
for(k=0;k<=m;k++){
|
||||
sum += (-1)^(m-k)*binomial(m,k)*k^n;
|
||||
}
|
||||
return sum/factorial(m);
|
||||
}
|
||||
}
|
||||
|
||||
static __CZ__stirling2;
|
||||
static __CZ__stirling2_n = -1;
|
||||
static __CZ__stirling2_m = -1;
|
||||
define stirling2caching(n,m){
|
||||
local nm i j ;
|
||||
if(n<0)return newerror("stirling2iter(n,m): n < 0");
|
||||
if(m<0)return newerror("stirling2iter(n,m): m < 0");
|
||||
/* no shortcuts here */
|
||||
|
||||
if(n<m) return 0;
|
||||
if(n==0 && n!=m) return 0;
|
||||
if(n==m) return 1;
|
||||
if(m==0 )return 0;
|
||||
if(m==1) return 1;
|
||||
if(m==2) return 2^(n-1)-1;
|
||||
|
||||
nm = n-m;
|
||||
if(__CZ__stirling2_n >= n && __CZ__stirling2_m >= m){
|
||||
return __CZ__stirling2[n,m];
|
||||
}
|
||||
else{
|
||||
__CZ__stirling2 = mat[n+1,m+1];
|
||||
__CZ__stirling2[0,0] = 1;
|
||||
for(i=1;i<=n;i++){
|
||||
__CZ__stirling2[i,0] = 0;
|
||||
for(j=1;j<=m;j++){
|
||||
if(j<=i){
|
||||
__CZ__stirling2[i, j] = __CZ__stirling2[i -1, j -1] + (j )\
|
||||
* __CZ__stirling2[i - 1, j];
|
||||
}
|
||||
else{
|
||||
__CZ__stirling2[i, j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__CZ__stirling2_n = (n);
|
||||
__CZ__stirling2_m = (m);
|
||||
return __CZ__stirling2[n,m];
|
||||
}
|
||||
|
||||
define bell(n){
|
||||
local sum s2list k A;
|
||||
|
||||
if(!isint(n)) return newerror("bell(n): n is not integer");
|
||||
if(n < 0) return newerror("bell(n): n is not positive");
|
||||
/* place some more shortcuts here?*/
|
||||
if(n<=15){
|
||||
mat A[16] = {
|
||||
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570,
|
||||
4213597, 27644437, 190899322, 1382958545
|
||||
};
|
||||
return A[n];
|
||||
}
|
||||
/* Start by generating the list of stirling numbers of the second kind */
|
||||
s2list = stirling2caching(n,n//2);
|
||||
if(iserror(s2list))
|
||||
return newerror("bell(n): could not build stirling num. list");
|
||||
sum = 0;
|
||||
for(k=1;k<=n;k++){
|
||||
sum += stirling2caching(n,k);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
define subfactorialrecursive(n){
|
||||
if(n==0) return 1;
|
||||
if(n==1) return 0;
|
||||
if(n==2) return 1;
|
||||
return n * subfactorialrecursive(n-1) + (-1)^n;
|
||||
}
|
||||
|
||||
/* This is, quite amusingely, faster than the very same algorithm in
|
||||
PARI/GP + GMP*/
|
||||
define subfactorialiterative(n){
|
||||
local k temp1 temp2 ret;
|
||||
if(n==0) return 1;
|
||||
if(n==1) return 0;
|
||||
if(n==2) return 1;
|
||||
temp1 = 0;
|
||||
ret = 1;
|
||||
for(k=3;k<=n;k++){
|
||||
temp2 = temp1;
|
||||
temp1 = ret;
|
||||
ret = (k-1) *(temp1 + temp2);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
define subfactorial(n){
|
||||
local epsilon eps ret lnfact;
|
||||
if(!isint(n))return newerror("subfactorial(n): n is not integer.");
|
||||
if(n < 0)return newerror("subfactorial(n): n < 0");
|
||||
return subfactorialiterative(n);
|
||||
}
|
||||
|
||||
define risingfactorial(x,n){
|
||||
local num denom quot ret;
|
||||
if(n == 1) return x;
|
||||
if(x==0) return newerror("risingfactorial(x,n): x == 0");
|
||||
if(!isint(x) || !isint(n)){
|
||||
return gamma(x+n)/gamma(x);
|
||||
}
|
||||
if(x<1)return newerror("risingfactorial(x,n): integer x and x < 1");
|
||||
if(x+n < 1)return newerror("risingfactorial(x,n): integer x+n and x+n < 1");
|
||||
if(x<9000&&n<9000){
|
||||
return (x+n-1)!/(x-1)!;
|
||||
}
|
||||
else{
|
||||
num = __CZ__factor_factorial(x+n-1,1);
|
||||
denom = __CZ__factor_factorial(x-1,1);
|
||||
quot = __CZ__subtract_factored_factorials( num , denom );
|
||||
free(num,denom);
|
||||
ret = __CZ__multiply_factored_factorial(quot);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
define fallingfactorial(x,n){
|
||||
local num denom quot ret;
|
||||
if(n == 0) return 1;
|
||||
|
||||
if(!isint(x) || !isint(n)){
|
||||
if(x == n) return gamma(x+1);
|
||||
return gamma(x+1)/gamma(x-n+1);
|
||||
}
|
||||
else{
|
||||
if(x<0 || x-n < 0)
|
||||
return newerror("fallingfactorial(x,n): integer x<0 or x-n < 0");
|
||||
if(x == n) return factorial(x);
|
||||
if(x<9000&&n<9000){
|
||||
return (x)!/(x-n)!;
|
||||
}
|
||||
else{
|
||||
num = __CZ__factor_factorial(x,1);
|
||||
denom = __CZ__factor_factorial(x-n,1);
|
||||
quot = __CZ__subtract_factored_factorials( num , denom );
|
||||
free(num,denom);
|
||||
ret = __CZ__multiply_factored_factorial(quot);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
* report important interface functions
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "binomial(n,k)";
|
||||
print "bigcatalan(n)";
|
||||
print "doublefactorial(n)";
|
||||
print "subfactorial(n)";
|
||||
print "stirling1(n,m)";
|
||||
print "stirling2(n,m)";
|
||||
print "stirling2caching(n,m)";
|
||||
print "bell(n)";
|
||||
print "subfactorial(n)";
|
||||
print "risingfactorial(x,n)";
|
||||
print "fallingfactorial(x,n)";
|
||||
}
|
288
cal/lambertw.cal
Normal file
288
cal/lambertw.cal
Normal file
@@ -0,0 +1,288 @@
|
||||
/*
|
||||
* lambertw- Lambert's W-function
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* lambertw is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* lambertw is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: lambertw.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/lambertw.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/*
|
||||
|
||||
R. M. Corless and G. H. Gonnet and D. E. G. Hare and D. J. Jeffrey and
|
||||
D. E. Knuth, "On the Lambert W Function", Advances n Computational
|
||||
Mathematics, 329--359, (1996)
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6117
|
||||
|
||||
D. J. Jeffrey, D. E. G. Hare, R. M. Corless, "Unwinding the branches of the
|
||||
Lambert W function", The Mathematical Scientist, 21, pp 1-7, (1996)
|
||||
http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
|
||||
|
||||
Darko Verebic, "Having Fun with Lambert W(x) Function"
|
||||
arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
|
||||
|
||||
Winitzki, S. "Uniform Approximations for Transcendental Functions",
|
||||
In Part 1 of Computational Science and its Applications - ICCSA 2003,
|
||||
Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
|
||||
Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
|
||||
A copy may be found by Google.
|
||||
|
||||
|
||||
*/
|
||||
static true = 1;
|
||||
static false = 0;
|
||||
|
||||
/* Branch 0, Winitzki (2003) , the well known Taylor series*/
|
||||
define __CZ__lambertw_0(z,eps){
|
||||
local a=2.344e0, b=0.8842e0, c=0.9294e0, d=0.5106e0, e=-1.213e0;
|
||||
local y=sqrt(2*exp(1)*z+2);
|
||||
return (2*ln(1+b*y)-ln(1+c*ln(1+d*y))+e)/(1+1/(2*ln(1+b*y)+2*a));
|
||||
}
|
||||
/* branch -1 */
|
||||
define __CZ__lambertw_m1(z,eps){
|
||||
local wn k;
|
||||
/* Cut-off found in Maxima */
|
||||
if(z < 0.3) return __CZ__lambertw_app(z,eps);
|
||||
wn = z;
|
||||
/* Verebic (2010) eqs. 16-18*/
|
||||
for(k=0;k<10;k++){
|
||||
wn = ln(-z)-ln(-wn);
|
||||
}
|
||||
return wn;
|
||||
}
|
||||
|
||||
/*
|
||||
generic approximation
|
||||
|
||||
series for 1+W((z-2)/(2 e))
|
||||
|
||||
Corless et al (1996) (4.22)
|
||||
Verebic (2010) eqs. 35-37; more coefficients given at the end of sect. 3.1
|
||||
or online
|
||||
http://www.wolframalpha.com/input/?
|
||||
i=taylor+%28+1%2Bproductlog%28+%28z-2%29%2F%282*e%29+%29+%29
|
||||
or by using the function lambertw_series_print() after running
|
||||
lambertw_series(z,eps,branch,terms) at least once with the wanted number of
|
||||
terms and z = 1 (which might throw an error because the series will not
|
||||
converge in anybodies lifetime for something that far from the branchpoint).
|
||||
|
||||
|
||||
*/
|
||||
define __CZ__lambertw_app(z,eps){
|
||||
local b0=-1, b1=1, b2=-1/3, b3=11/72;
|
||||
local y=sqrt(2*exp(1)*z+2);
|
||||
return b0 + ( y * (b1 + (y * (b2 + (b3 * y)))));
|
||||
}
|
||||
|
||||
static __CZ__Ws_a;
|
||||
static __CZ__Ws_c;
|
||||
static __CZ__Ws_len=0;
|
||||
|
||||
define lambertw_series_print(){
|
||||
local k;
|
||||
for(k=0;k<__CZ__Ws_len;k++){
|
||||
print num(__CZ__Ws_c[k]):"/":den(__CZ__Ws_c[k]):"*p^":k;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
The series is fast but only if _very_ close to the branchpoint
|
||||
The exact branch must be given explicitly, e.g.:
|
||||
|
||||
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,0)
|
||||
-0.14758879113205794065490184399030194122136720202792-
|
||||
0.00000000000000000000000000000000000000000000000000i
|
||||
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,1)
|
||||
0.00000000000000000000000000000000000000000000000000-
|
||||
0.00000000000000000000000000000000000000000000000000i
|
||||
*/
|
||||
define lambertw_series(z,eps,branch,terms){
|
||||
local k l limit tmp sum A C P PP epslocal;
|
||||
if(!isnull(terms))
|
||||
limit = terms;
|
||||
else
|
||||
limit = 100;
|
||||
|
||||
if(isnull(eps))
|
||||
eps = epsilon(epsilon()*1e-10);
|
||||
epslocal = epsilon(eps);
|
||||
|
||||
P = sqrt(2*(exp(1)*z+1));
|
||||
if(branch != 0) P = -P;
|
||||
tmp=0;sum=0;PP=P;
|
||||
|
||||
__CZ__Ws_a = mat[limit+1];
|
||||
__CZ__Ws_c = mat[limit+1];
|
||||
__CZ__Ws_len = limit;
|
||||
/*
|
||||
c0 = -1; c1 = 1
|
||||
a0 = 2; a1 =-1
|
||||
*/
|
||||
__CZ__Ws_c[0] = -1; __CZ__Ws_c[1] = 1;
|
||||
__CZ__Ws_a[0] = 2; __CZ__Ws_a[1] = -1;
|
||||
sum += __CZ__Ws_c[0];
|
||||
sum += __CZ__Ws_c[1] * P;
|
||||
PP *= P;
|
||||
for(k=2;k<limit;k++){
|
||||
for(l=2;l<k;l++){
|
||||
__CZ__Ws_a[k] += __CZ__Ws_c[l]*__CZ__Ws_c[k+1-l];
|
||||
}
|
||||
|
||||
__CZ__Ws_c[k] = (k-1) * ( __CZ__Ws_c[k-2]/2
|
||||
+__CZ__Ws_a[k-2]/4)/
|
||||
(k+1)-__CZ__Ws_a[k]/2-__CZ__Ws_c[k-1]/(k+1);
|
||||
tmp = __CZ__Ws_c[k] * PP;
|
||||
sum += tmp;
|
||||
if(abs(tmp) <= eps){
|
||||
epsilon(epslocal);
|
||||
return sum;
|
||||
}
|
||||
PP *= P;
|
||||
}
|
||||
epsilon(epslocal);
|
||||
return
|
||||
newerror(strcat("lambertw_series: does not converge in ",
|
||||
str(limit)," terms" ));
|
||||
}
|
||||
|
||||
/* */
|
||||
define lambertw(z,branch){
|
||||
local eps epslarge ret branchpoint bparea w we ew w1e wn k places m1e;
|
||||
local closeness;
|
||||
|
||||
eps = epsilon();
|
||||
if(branch == 0){
|
||||
if(!im(z)){
|
||||
if(abs(z) <= eps) return 0;
|
||||
if(abs(z-exp(1)) <= eps) return 1;
|
||||
if(abs(z - (-ln(2)/2)) <= eps ) return -ln(2);
|
||||
if(abs(z - (-pi()/2)) <= eps ) return 1i*pi()/2;
|
||||
}
|
||||
}
|
||||
|
||||
branchpoint = -exp(-1);
|
||||
bparea = .2;
|
||||
if(branch == 0){
|
||||
if(!im(z) && abs(z-branchpoint) == 0) return -1;
|
||||
ret = __CZ__lambertw_0(z,eps);
|
||||
/* Yeah, C&P, I know, sorry */
|
||||
##ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
|
||||
}
|
||||
else if(branch == 1){
|
||||
if(im(z)<0 && abs(z-branchpoint) <= bparea)
|
||||
ret = __CZ__lambertw_app(z,eps);
|
||||
/* Does calc have a goto? Oh, it does! */
|
||||
ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
|
||||
}
|
||||
else if(branch == -1){##print "-1";
|
||||
if(!im(z) && abs(z-branchpoint) == 0) return -1;
|
||||
if(!im(z) && z>branchpoint && z < 0){##print "0";
|
||||
ret = __CZ__lambertw_m1(z,eps);}
|
||||
if(im(z)>=0 && abs(z-branchpoint) <= bparea){##print "1";
|
||||
ret = __CZ__lambertw_app(z,eps);}
|
||||
ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
|
||||
}
|
||||
else
|
||||
ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
|
||||
|
||||
/*
|
||||
Such a high precision is only needed _very_ close to the branchpoint
|
||||
and might even be insufficient if z has not been computed with
|
||||
sufficient precision itself (M below was calculated by Mathematica and also
|
||||
with the series above with epsilon(1e-200)):
|
||||
; epsilon(1e-50)
|
||||
0.00000000000000000001
|
||||
; display(50)
|
||||
20
|
||||
; M=-0.9999999999999999999999997668356018402875796636464119050387
|
||||
; lambertw(-exp(-1)+1e-50,0)-M
|
||||
-0.00000000000000000000000002678416515423276355643684
|
||||
; epsilon(1e-60)
|
||||
0.0000000000000000000000000000000000000000000000000
|
||||
; A=-exp(-1)+1e-50
|
||||
; epsilon(1e-50)
|
||||
0.00000000000000000000000000000000000000000000000000
|
||||
; lambertw(A,0)-M
|
||||
-0.00000000000000000000000000000000000231185460220585
|
||||
; lambertw_series(A,epsilon(),0)-M
|
||||
-0.00000000000000000000000000000000000132145133161626
|
||||
; epsilon(1e-100)
|
||||
0.00000000000000000000000000000000000000000000000001
|
||||
; A=-exp(-1)+1e-50
|
||||
; epsilon(1e-65)
|
||||
0.00000000000000000000000000000000000000000000000000
|
||||
; lambertw_series(A,epsilon(),0)-M
|
||||
0.00000000000000000000000000000000000000000000000000
|
||||
; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
|
||||
-0.00000000000000000000000000000000000000002959444084
|
||||
; epsilon(1e-74)
|
||||
0.00000000000000000000000000000000000000000000000000
|
||||
; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
|
||||
-0.00000000000000000000000000000000000000000000000006
|
||||
*/
|
||||
closeness = abs(z-branchpoint);
|
||||
if( closeness< 1){
|
||||
if(closeness != 0)
|
||||
eps = epsilon(epsilon()*( closeness));
|
||||
else
|
||||
eps = epsilon(epsilon()^2);
|
||||
}
|
||||
else
|
||||
eps = epsilon(epsilon()*1e-2);
|
||||
|
||||
|
||||
epslarge =epsilon();
|
||||
|
||||
places = highbit(1 + int(1/epslarge)) + 1;
|
||||
w = ret;
|
||||
for(k=0;k<100;k++){
|
||||
ew = exp(w);
|
||||
we = w*ew;
|
||||
if(abs(we-z)<= 4*epslarge*abs(z))break;
|
||||
w1e = (1+w)*ew;
|
||||
wn = bround(w- ((we - z) / ( w1e - ( (w+2)*(we-z) )/(2*w+2) ) ),places++) ;
|
||||
if( abs(wn - w) <= epslarge*abs(wn)) break;
|
||||
else w = wn;
|
||||
}
|
||||
|
||||
if(k==100){
|
||||
epsilon(eps);
|
||||
return newerror("lambertw: Halley iteration does not converge");
|
||||
}
|
||||
/* The Maxima coders added a check if the iteration converged to the correct
|
||||
branch. This coder deems it superfluous. */
|
||||
|
||||
epsilon(eps);
|
||||
return wn;
|
||||
}
|
||||
|
||||
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "lambertw(z,branch)";
|
||||
print "lambertw_series(z,eps,branch,terms)";
|
||||
print "lambertw_series_print()";
|
||||
}
|
112
cal/lnseries.cal
Normal file
112
cal/lnseries.cal
Normal file
@@ -0,0 +1,112 @@
|
||||
/*
|
||||
* special_functions - special functions (e.g.: gamma, zeta, psi)
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* lnseries.cal is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* lnseries.cal is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: lnseries.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/lnseries.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* hide internal function from resource debugging
|
||||
*/
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
static __CZ__int_logs;
|
||||
static __CZ__int_logs_limit;
|
||||
static __CZ__int_logs_prec;
|
||||
|
||||
|
||||
define deletelnseries(){
|
||||
free(__CZ__int_logs,__CZ__int_logs_limit,__CZ__int_logs_prec);
|
||||
}
|
||||
|
||||
define lnfromseries(n){
|
||||
if( isnull(__CZ__int_logs)
|
||||
|| __CZ__int_logs_limit < n
|
||||
|| __CZ__int_logs_prec < log(1/epsilon())){
|
||||
|
||||
lnseries(n+1);
|
||||
}
|
||||
return __CZ__int_logs[n,0];
|
||||
}
|
||||
|
||||
define lnseries(limit){
|
||||
local k j eps ;
|
||||
if( isnull(__CZ__int_logs)
|
||||
|| __CZ__int_logs_limit < limit
|
||||
|| __CZ__int_logs_prec < log(1/epsilon())){
|
||||
__CZ__int_logs = mat[limit+1,2];
|
||||
__CZ__int_logs_limit = limit;
|
||||
__CZ__int_logs_prec = log(1/epsilon());
|
||||
|
||||
/* probably still too much */
|
||||
eps = epsilon(epsilon()*10^(-(5+log(limit))));
|
||||
k =2;
|
||||
while(1){
|
||||
/* the prime itself, compute logarithm */
|
||||
__CZ__int_logs[k,0] = ln(k);
|
||||
__CZ__int_logs[k,1] = k;
|
||||
|
||||
for(j = 2*k;j<=limit;j+=k){
|
||||
/* multiples of prime k, add logarithm of k computed earlier */
|
||||
__CZ__int_logs[j,0] += __CZ__int_logs[k,0];
|
||||
/* First hit, set counter to number */
|
||||
if(__CZ__int_logs[j,1] ==0)
|
||||
__CZ__int_logs[j,1]=j;
|
||||
/* reduce counter by prime added */
|
||||
__CZ__int_logs[j,1] //= __CZ__int_logs[k,1];
|
||||
}
|
||||
|
||||
k++;
|
||||
if(k>=limit) break;
|
||||
/* Erastothenes-sieve: look for next prime. */
|
||||
while(__CZ__int_logs[k,0]!=0){
|
||||
k++;
|
||||
if(k>=limit) break;
|
||||
}
|
||||
}
|
||||
/* Second run to include the last factor */
|
||||
for(k=1;k<=limit;k++){
|
||||
if(__CZ__int_logs[k,1] != k){
|
||||
__CZ__int_logs[k,0] +=__CZ__int_logs[ __CZ__int_logs[k,1],0];
|
||||
__CZ__int_logs[k,1] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
epsilon(eps);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "lnseries(limit)";
|
||||
print "lnfromseries(n)";
|
||||
print "deletelnseries()";
|
||||
}
|
@@ -17,8 +17,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.1 $
|
||||
* @(#) $Id: quat.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: quat.cal,v 30.2 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/quat.cal,v $
|
||||
*
|
||||
* Under source code control: 1990/02/15 01:50:35
|
||||
@@ -55,7 +55,8 @@ define quat(a,b,c,d)
|
||||
|
||||
define quat_print(a)
|
||||
{
|
||||
print "quat(" : a.s : ", " : a.v[0] : ", " : a.v[1] : ", " : a.v[2] : ")" :;
|
||||
print "quat(" : a.s : ", " : a.v[0] : ", " :
|
||||
a.v[1] : ", " : a.v[2] : ")" :;
|
||||
}
|
||||
|
||||
|
||||
|
@@ -17,8 +17,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.7 $
|
||||
* @(#) $Id: regress.cal,v 30.7 2013/08/11 02:57:22 chongo Exp $
|
||||
* @(#) $Revision: 30.8 $
|
||||
* @(#) $Id: regress.cal,v 30.8 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/regress.cal,v $
|
||||
*
|
||||
* Under source code control: 1990/02/15 01:50:36
|
||||
@@ -1397,7 +1397,8 @@ define test_functions()
|
||||
vrfy(quomod(10,-3,a,b,12) == 1, '1193: vrfy(quomod(10,-3,a,b,12) == 1');
|
||||
vrfy(a == -3, '1194: a == -3');
|
||||
vrfy(b == 1, '1195: b == 1');
|
||||
vrfy(quomod(-10,-3,a,b,13) == 1,'1196: vrfy(quomod(-10,-3,a,b,13) == 1');
|
||||
vrfy(quomod(-10,-3,a,b,13) == 1,
|
||||
'1196: vrfy(quomod(-10,-3,a,b,13) == 1');
|
||||
vrfy(a == 4, '1197: a == 4');
|
||||
vrfy(b == 2, '1198: b == 2');
|
||||
vrfy(quomod(10,3,a,b,14) == 1, '1199: vrfy(quomod(10,3,a,b,14) == 1');
|
||||
@@ -1509,8 +1510,10 @@ define test_assoc()
|
||||
vrfy(isnull(search(a,16)), '1312: isnull(search(a,16))');
|
||||
a["curds","whey"] = "spider";
|
||||
print '1313: a["curds","whey"] = "spider"';
|
||||
vrfy(a["curds","whey"] == "spider", '1314: a["curds","whey"] == "spider"');
|
||||
vrfy(a[[rsearch(a,"spider")]] == "spider", '1315: a[[rsearch(a,"spider")]] == "spider"');
|
||||
vrfy(a["curds","whey"] == "spider",
|
||||
'1314: a["curds","whey"] == "spider"');
|
||||
vrfy(a[[rsearch(a,"spider")]] == "spider",
|
||||
'1315: a[[rsearch(a,"spider")]] == "spider"');
|
||||
b = a;
|
||||
print '1316: b = a';
|
||||
vrfy(b[17] == 19, '1317: b[17] == 19');
|
||||
@@ -4892,7 +4895,8 @@ define test_newsyn()
|
||||
vrfy(s5500 == 55, '5510: s5500 == 45');
|
||||
vrfy(i == 11, '5511: i == 11');
|
||||
}
|
||||
print "5512: { local i; for (s5500 = 0, i = 0; i < 10; i++) s5500 += i; ... }";
|
||||
print "5512: { local i; for (s5500 = 0, i = 0; i < 10; i++) ":
|
||||
"s5500 += i; ... }";
|
||||
vrfy(s5500 == 55, '5513: s5500 == 55');
|
||||
vrfy(i == 11, '5514: i == 11');
|
||||
|
||||
@@ -6506,7 +6510,8 @@ define test_blk()
|
||||
/* A second named block */
|
||||
|
||||
B1 = blk("+++6700", 15, 10) = {1,2,3,4,5};
|
||||
print '6746: B1 = blk("+++6700", 15 , 10) = {1,2,3,4,5};';
|
||||
print
|
||||
'6746: B1 = blk("+++6700", 15 , 10) = {1,2,3,4,5};';
|
||||
vrfy(size(B1) == 15, '6747: size(B1) == 15');
|
||||
vrfy(sizeof(B1) == 20, '6748: sizeof(B1) == 20');
|
||||
vrfy(test(B1) == 1, '6749: test(B1) == 1');
|
||||
@@ -6871,7 +6876,8 @@ define test_sha1()
|
||||
|
||||
|
||||
z = sha1(list(1,2,3), "curds and whey", 2^21701-1, pi(1e-100));
|
||||
print '7210: z = sha1(list(1,2,3), "curds and whey", 2^21701-1, pi(1e-100));';
|
||||
print '7210: z = sha1(list(1,2,3), "curds and whey",',
|
||||
'2^21701-1, pi(1e-100));';
|
||||
vrfy(sha1(z) == 0x158cc87deeb9dd478ca14e3ab359205b0fb15b83,
|
||||
'7211: sha1(z) == 0x158cc87deeb9dd478ca14e3ab359205b0fb15b83');
|
||||
|
||||
@@ -7923,7 +7929,6 @@ print '8901: read -once "test8900"';
|
||||
read -once "test8900";
|
||||
print '8902: about to run test8900(1,,8903)';
|
||||
testnum = test8900(1,,8903);
|
||||
print testnum: ": End of test of calc resource functions by Christoph Zurnieden";
|
||||
/* 89xx: test calc resource functions by Christoph Zurnieden */
|
||||
|
||||
|
||||
|
@@ -17,8 +17,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: solve.cal,v 30.2 2008/05/10 13:30:00 chongo Exp $
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: solve.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/solve.cal,v $
|
||||
*
|
||||
* Under source code control: 1990/02/15 01:50:37
|
||||
@@ -52,7 +52,8 @@ define solve(low, high, epsilon)
|
||||
if (sgn(flow) == sgn(fhigh))
|
||||
quit "Non-opposite signs";
|
||||
while (1) {
|
||||
mid = bround(high - fhigh * (high - low) / (fhigh - flow), places);
|
||||
mid = bround(high - fhigh * (high - low) / (fhigh - flow),
|
||||
places);
|
||||
if ((mid == low) || (mid == high))
|
||||
places++;
|
||||
fmid = f(mid);
|
||||
|
1394
cal/specialfunctions.cal
Normal file
1394
cal/specialfunctions.cal
Normal file
File diff suppressed because it is too large
Load Diff
502
cal/statistics.cal
Normal file
502
cal/statistics.cal
Normal file
@@ -0,0 +1,502 @@
|
||||
/*
|
||||
* statistics - Some assorted statistics functions.
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* statistics is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* statistics is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: statistics.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/statistics.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/*
|
||||
get dependencies
|
||||
*/
|
||||
read -once factorial2 brentsolve
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
*
|
||||
* Continuous distributions
|
||||
*
|
||||
*
|
||||
******************************************************************************/
|
||||
|
||||
/* regularized incomplete gamma function like in Octave, hence the name */
|
||||
define gammaincoctave(z,a){
|
||||
local tmp;
|
||||
tmp = gamma(z);
|
||||
return (tmp-gammainc(a,z))/tmp;
|
||||
}
|
||||
|
||||
/* Inverse incomplete beta function. Old and slow. */
|
||||
static __CZ__invbeta_a;
|
||||
static __CZ__invbeta_b;
|
||||
static __CZ__invbeta_x;
|
||||
define __CZ__invbeta(x){
|
||||
return __CZ__invbeta_x-__CZ__ibetaas63(x,__CZ__invbeta_a,__CZ__invbeta_b);
|
||||
}
|
||||
|
||||
define invbetainc_slow(x,a,b){
|
||||
local flag ret eps;
|
||||
/* place checks and balances here */
|
||||
eps = epsilon();
|
||||
if(.5 < x){
|
||||
__CZ__invbeta_x = 1 - x;
|
||||
__CZ__invbeta_a = b;
|
||||
__CZ__invbeta_b = a;
|
||||
flag = 1;
|
||||
}
|
||||
else{
|
||||
__CZ__invbeta_x = x;
|
||||
__CZ__invbeta_a = a;
|
||||
__CZ__invbeta_b = b;
|
||||
flag = 0;
|
||||
}
|
||||
|
||||
ret = brentsolve2(0,1,1);
|
||||
|
||||
if(flag == 1)
|
||||
ret = 1-ret;
|
||||
epsilon(eps);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Inverse incomplete beta function. Still old but not as slow as the function
|
||||
above. */
|
||||
/*
|
||||
Purpose:
|
||||
|
||||
invbetainc computes inverse of the incomplete Beta function.
|
||||
|
||||
Licensing:
|
||||
|
||||
This code is distributed under the GNU LGPL license.
|
||||
|
||||
Modified:
|
||||
|
||||
10 August 2013
|
||||
|
||||
Author:
|
||||
|
||||
Original FORTRAN77 version by GW Cran, KJ Martin, GE Thomas.
|
||||
C version by John Burkardt.
|
||||
Calc version by Christoph Zurnieden
|
||||
|
||||
Reference:
|
||||
|
||||
GW Cran, KJ Martin, GE Thomas,
|
||||
Remark AS R19 and Algorithm AS 109:
|
||||
A Remark on Algorithms AS 63: The Incomplete Beta Integral
|
||||
and AS 64: Inverse of the Incomplete Beta Integeral,
|
||||
Applied Statistics,
|
||||
Volume 26, Number 1, 1977, pages 111-114.
|
||||
|
||||
Parameters:
|
||||
|
||||
Input, P, Q, the parameters of the incomplete
|
||||
Beta function.
|
||||
|
||||
Input, BETA, the logarithm of the value of
|
||||
the complete Beta function.
|
||||
|
||||
Input, ALPHA, the value of the incomplete Beta
|
||||
function. 0 <= ALPHA <= 1.
|
||||
|
||||
Output, the argument of the incomplete
|
||||
Beta function which produces the value ALPHA.
|
||||
|
||||
Local Parameters:
|
||||
|
||||
Local, SAE, the most negative decimal exponent
|
||||
which does not cause an underflow.
|
||||
*/
|
||||
define invbetainc(x,a,b){
|
||||
return __CZ__invbetainc(a,b,lnbeta(a,b),x);
|
||||
}
|
||||
|
||||
define __CZ__invbetainc(p,q,beta,alpha){
|
||||
local a acu adj fpu g h iex indx pp prev qq r s sae sq t tx value;
|
||||
local w xin y yprev places eps;
|
||||
|
||||
/* Dirty trick, don't try at home */
|
||||
eps= epsilon(epsilon()^2);
|
||||
sae = -((log(1/epsilon())/log(2))//2);
|
||||
fpu = 10.0^sae;
|
||||
|
||||
places = highbit(1 + int(1/epsilon())) + 1;
|
||||
value = alpha;
|
||||
if( p <= 0.0 ){
|
||||
epsilon(eps);
|
||||
return newerror("invbeta: argument p <= 0");
|
||||
}
|
||||
if( q <= 0.0 ){
|
||||
epsilon(eps);
|
||||
return newerror("invbeta: argument q <= 0");
|
||||
}
|
||||
|
||||
if( alpha < 0.0 || 1.0 < alpha ){
|
||||
epsilon(eps);
|
||||
return newerror("invbeta: argument alpha out of domain");
|
||||
}
|
||||
if( alpha == 0.0 ){
|
||||
epsilon(eps);
|
||||
return 0;
|
||||
}
|
||||
if( alpha == 1.0 ){
|
||||
epsilon(eps);
|
||||
return 1;
|
||||
}
|
||||
if ( 0.5 < alpha ){
|
||||
a = 1.0 - alpha;
|
||||
pp = q;
|
||||
qq = p;
|
||||
indx = 1;
|
||||
}
|
||||
else{
|
||||
a = alpha;
|
||||
pp = p;
|
||||
qq = q;
|
||||
indx = 0;
|
||||
}
|
||||
r = sqrt ( - ln ( a * a ) );
|
||||
|
||||
y = r-(2.30753+0.27061*r)/(1.0+(0.99229+0.04481*r)*r);
|
||||
|
||||
if ( 1.0 < pp && 1.0 < qq ){
|
||||
r = ( y * y - 3.0 ) / 6.0;
|
||||
s = 1.0 / ( pp + pp - 1.0 );
|
||||
t = 1.0 / ( qq + qq - 1.0 );
|
||||
h = 2.0 / ( s + t );
|
||||
w = y*sqrt(h+r)/h-(t-s)*(r+5.0/6.0-2.0/(3.0*h));
|
||||
value = pp / ( pp + qq * exp ( w + w ) );
|
||||
}
|
||||
else{
|
||||
r = qq + qq;
|
||||
t = 1.0 / ( 9.0 * qq );
|
||||
t = r * ( 1.0 - t + y * sqrt ( t )^ 3 );
|
||||
|
||||
if ( t <= 0.0 ){
|
||||
value = 1.0 - exp ( ( ln ( ( 1.0 - a ) * qq ) + beta ) / qq );
|
||||
}
|
||||
else{
|
||||
t = ( 4.0 * pp + r - 2.0 ) / t;
|
||||
|
||||
if ( t <= 1.0 ) {
|
||||
value = exp ( ( ln ( a * pp ) + beta ) / pp );
|
||||
}
|
||||
else{
|
||||
value = 1.0 - 2.0 / ( t + 1.0 );
|
||||
}
|
||||
}
|
||||
}
|
||||
r = 1.0 - pp;
|
||||
t = 1.0 - qq;
|
||||
yprev = 0.0;
|
||||
sq = 1.0;
|
||||
prev = 1.0;
|
||||
|
||||
if ( value < 0.0001 )
|
||||
value = 0.0001;
|
||||
|
||||
if ( 0.9999 < value )
|
||||
value = 0.9999;
|
||||
|
||||
acu = 10^sae;
|
||||
|
||||
for ( ; ; ){
|
||||
y = bround(__CZ__ibetaas63( value, pp, qq, beta),places);
|
||||
xin = value;
|
||||
y = bround(exp(ln(y-a)+(beta+r*ln(xin)+t*ln(1.0- xin ) )),places);
|
||||
|
||||
if ( y * yprev <= 0.0 ) {
|
||||
prev = max ( sq, fpu );
|
||||
}
|
||||
|
||||
g = 1.0;
|
||||
|
||||
for ( ; ; ){
|
||||
for ( ; ; ){
|
||||
adj = g * y;
|
||||
sq = adj * adj;
|
||||
if ( sq < prev ){
|
||||
tx = value - adj;
|
||||
if ( 0.0 <= tx && tx <= 1.0 ) break;
|
||||
}
|
||||
g = g / 3.0;
|
||||
}
|
||||
if ( prev <= acu ){
|
||||
if ( indx )
|
||||
value = 1.0 - value;
|
||||
epsilon(eps);
|
||||
return value;
|
||||
}
|
||||
if ( y * y <= acu ){
|
||||
if ( indx )
|
||||
value = 1.0 - value;
|
||||
epsilon(eps);
|
||||
return value;
|
||||
}
|
||||
if ( tx != 0.0 && tx != 1.0 )
|
||||
break;
|
||||
g = g / 3.0;
|
||||
}
|
||||
if ( tx == value ) break;
|
||||
value = tx;
|
||||
yprev = y;
|
||||
}
|
||||
if ( indx )
|
||||
value = 1.0 - value;
|
||||
|
||||
epsilon(eps);
|
||||
return value;
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
*
|
||||
* Beta distribution
|
||||
*
|
||||
*
|
||||
******************************************************************************/
|
||||
|
||||
define betapdf(x,a,b){
|
||||
if(x<0 || x>1) return newerror("betapdf: parameter x out of domain");
|
||||
if(a<=0) return newerror("betapdf: parameter a out of domain");
|
||||
if(b<=0) return newerror("betapdf: parameter b out of domain");
|
||||
|
||||
return 1/beta(a,b) *x^(a-1)*(1-x)^(b-1);
|
||||
}
|
||||
|
||||
define betacdf(x,a,b){
|
||||
if(x<0 || x>1) return newerror("betacdf: parameter x out of domain");
|
||||
if(a<=0) return newerror("betacdf: parameter a out of domain");
|
||||
if(b<=0) return newerror("betacdf: parameter b out of domain");
|
||||
|
||||
return betainc(x,a,b);
|
||||
}
|
||||
|
||||
define betacdfinv(x,a,b){
|
||||
return invbetainc(x,a,b);
|
||||
}
|
||||
|
||||
define betamedian(a,b){
|
||||
local t106 t104 t103 t105 approx ret;
|
||||
if(a == b) return 1/2;
|
||||
if(a == 1 && b > 0) return 1-(1/2)^(1/b);
|
||||
if(a > 0 && b == 1) return (1/2)^(1/a);
|
||||
if(a == 3 && b == 2){
|
||||
/* Yes, the author is not ashamed to ask Maxima for the exact solution
|
||||
of a quartic equation. */
|
||||
t103 = ( (2^(3/2))/27 +4/27 )^(1/3);
|
||||
t104 = sqrt( ( 9*t103^2 + 4*t103 + 2 )/(t103) )/3;
|
||||
t105 = -t103-2/(9*t103) +8/9;
|
||||
t106 = sqrt( (27*t104*t105+16)/(t104) )/(2*3^(3/2));
|
||||
return -t106+t104/2+1/3;
|
||||
}
|
||||
if(a == 2 && b == 3){
|
||||
t103 = ( (2^(3/2))/27 +4/27 )^(1/3);
|
||||
t104 = sqrt( ( 9*t103^2 + 4*t103 + 2 )/(t103) )/3;
|
||||
t105 = -t103-2/(9*t103) +8/9;
|
||||
t106 = sqrt( (27*t104*t105+16)/(t104) )/(2*3^(3/2));
|
||||
return 1-(-t106+t104/2+1/3);
|
||||
}
|
||||
return invbetainc(1/2,a,b);
|
||||
}
|
||||
|
||||
define betamode(a,b){
|
||||
if(a + b == 2) return newerror("betamod: a + b = 2 = division by zero");
|
||||
return (a-1)/(a+b-2);
|
||||
}
|
||||
|
||||
define betavariance(a,b){
|
||||
return (a*b)/( (a+b)^2*(a+b+1) );
|
||||
}
|
||||
|
||||
define betalnvariance(a,b){
|
||||
return polygamma(1,a)-polygamma(a+b);
|
||||
}
|
||||
|
||||
define betaskewness(a,b){
|
||||
return (2*(b-a)*sqrt(a+b+1))/( (a+b+1)*sqrt(a*b) );
|
||||
}
|
||||
|
||||
define betakurtosis(a,b){
|
||||
local num denom;
|
||||
|
||||
num = 6*( (a-b)^2*(a+b+1)-a*b*(a+b+2));
|
||||
denom = a*b*(a+b+2)*(a+b+3);
|
||||
return num/denom;
|
||||
}
|
||||
|
||||
define betaentropy(a,b){
|
||||
return lnbeta(a,b)-(a-1)*psi(a)-(b-1)*psi(b)+(a+b+1)*psi(a+b);
|
||||
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
*
|
||||
* Normal (Gaussian) distribution
|
||||
*
|
||||
*
|
||||
******************************************************************************/
|
||||
|
||||
|
||||
define normalpdf(x,mu,sigma){
|
||||
return 1/(sqrt(2*pi()*sigma^2))*exp( ( (x-mu)^2 )/( 2*sigma^2 ) );
|
||||
}
|
||||
|
||||
define normalcdf(x,mu,sigma){
|
||||
return 1/2*(1+erf( ( x-mu )/( sqrt(2*sigma^2) ) ) );
|
||||
}
|
||||
|
||||
define probit(p){
|
||||
if(p<0 || p > 1) return newerror("probit: p out of domain 0<=p<=1");
|
||||
return sqrt(2)*ervinv(2*p-1);
|
||||
}
|
||||
|
||||
define normalcdfinv(p,mu,sigma){
|
||||
if(p<0 || p > 1) return newerror("normalcdfinv: p out of domain 0<=p<=1");
|
||||
return mu+ sigma*probit(p);
|
||||
}
|
||||
|
||||
define normalmean(mu,sigma){return mu;}
|
||||
|
||||
define normalmedian(mu,sigma){return mu;}
|
||||
|
||||
define normalmode(mu,sigma){return mu;}
|
||||
|
||||
define normalvariance(mu,sigma){return sigma^2;}
|
||||
|
||||
define normalskewness(mu,sigma){return 0;}
|
||||
|
||||
define normalkurtosis(mu,sigma){return 0;}
|
||||
|
||||
define normalentropy(mu,sigma){
|
||||
return 1/3*ln( 2*pi()*exp(1)*sigma^2 );
|
||||
}
|
||||
|
||||
/* moment generating f. */
|
||||
define normalmgf(mu,sigma,t){
|
||||
return exp(mu*t+1/2*sigma^2*t^2);
|
||||
}
|
||||
|
||||
/* characteristic f. */
|
||||
define normalcf(mu,sigma,t){
|
||||
return exp(mu*t-1/2*sigma^2*t^2);
|
||||
}
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
*
|
||||
* Chi-squared distribution
|
||||
*
|
||||
*
|
||||
******************************************************************************/
|
||||
|
||||
define chisquaredpdf(x,k){
|
||||
if(!isint(k) || k<0) return newerror("chisquaredpdf: k not in N");
|
||||
if(im(x) || x<0) return newerror("chisquaredpdf: x not in +R");
|
||||
/* The gamma function does not check for half integers, do it here? */
|
||||
return 1/(2^(k/2)*gamma(k/2))*x^((k/2)-1)*exp(-x/2);
|
||||
}
|
||||
|
||||
define chisquaredpcdf(x,k){
|
||||
if(!isint(k) || k<0) return newerror("chisquaredcdf: k not in N");
|
||||
if(im(x) || x<0) return newerror("chisquaredcdf: x not in +R");
|
||||
|
||||
return 1/(gamma(k/2))*gammainc(k/2,x/2);
|
||||
}
|
||||
|
||||
define chisquaredmean(x,k){return k;}
|
||||
|
||||
define chisquaredmedian(x,k){
|
||||
/* TODO: implement a FAST inverse incomplete gamma-{q,p} function */
|
||||
return k*(1-2/(9*k))^3;
|
||||
}
|
||||
|
||||
define chisquaredmode(x,k){return max(k-2,0);}
|
||||
define chisquaredvariance(x,k){return 2*k;}
|
||||
define chisquaredskewness(x,k){return sqrt(8/k);}
|
||||
define chisquaredkurtosis(x,k){return 12/k;}
|
||||
define chisquaredentropy(x,k){
|
||||
return k/2+ln(2*gamma(k/2)) + (1-k/2)*psi(k/2);
|
||||
}
|
||||
|
||||
define chisquaredmfg(k,t){
|
||||
if(t>=1/2)return newerror("chisquaredmfg: t >= 1/2");
|
||||
return (1-2*t)^(k/2);
|
||||
}
|
||||
|
||||
define chisquaredcf(k,t){
|
||||
return (1-2*1i*t)^(k/2);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "gammaincoctave(z,a)";
|
||||
print "invbetainc(x,a,b)";
|
||||
print "betapdf(x,a,b)";
|
||||
print "betacdf(x,a,b)";
|
||||
print "betacdfinv(x,a,b)";
|
||||
print "betamedian(a,b)";
|
||||
print "betamode(a,b)";
|
||||
print "betavariance(a,b)";
|
||||
print "betalnvariance(a,b)";
|
||||
print "betaskewness(a,b)";
|
||||
print "betakurtosis(a,b)";
|
||||
print "betaentropy(a,b)";
|
||||
print "normalpdf(x,mu,sigma)";
|
||||
print "normalcdf(x,mu,sigma)";
|
||||
print "probit(p)";
|
||||
print "normalcdfinv(p,mu,sigma)";
|
||||
print "normalmean(mu,sigma)";
|
||||
print "normalmedian(mu,sigma)";
|
||||
print "normalmode(mu,sigma)";
|
||||
print "normalvariance(mu,sigma)";
|
||||
print "normalskewness(mu,sigma)";
|
||||
print "normalkurtosis(mu,sigma)";
|
||||
print "normalentropy(mu,sigma)";
|
||||
print "normalmgf(mu,sigma,t)";
|
||||
print "normalcf(mu,sigma,t)";
|
||||
print "chisquaredpdf(x,k)";
|
||||
print "chisquaredpcdf(x,k)";
|
||||
print "chisquaredmean(x,k)";
|
||||
print "chisquaredmedian(x,k)";
|
||||
print "chisquaredmode(x,k)";
|
||||
print "chisquaredvariance(x,k)";
|
||||
print "chisquaredskewness(x,k)";
|
||||
print "chisquaredkurtosis(x,k)";
|
||||
print "chisquaredentropy(x,k)";
|
||||
print "chisquaredmfg(k,t)";
|
||||
print "chisquaredcf(k,t)";
|
||||
}
|
||||
|
@@ -19,8 +19,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: test2600.cal,v 30.2 2007/07/11 22:57:23 chongo Exp $
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: test2600.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/test2600.cal,v $
|
||||
*
|
||||
* Under source code control: 1995/10/13 00:13:14
|
||||
@@ -91,7 +91,8 @@ define testismult(str, n, verbose)
|
||||
if (!ismult(c,a)) {
|
||||
m++;
|
||||
if (verbose > 1) {
|
||||
printf("*** Failure with:\na = %d\nb = %d\n", a,b);
|
||||
printf("*** Failure with:\na = %d\nb = %d\n",
|
||||
a,b);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -133,7 +134,8 @@ define testsqrt(str, n, eps, verbose)
|
||||
if (abs(c) > 1) {
|
||||
m++;
|
||||
if (verbose > 1) {
|
||||
printf("*** Failure with:\na = %d\neps = %d\n", a,eps);
|
||||
printf("*** Failure with:\na = %d\neps = %d\n",
|
||||
a,eps);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -178,7 +180,8 @@ define testexp(str, n, eps, verbose)
|
||||
if (abs(c) > 0.02) {
|
||||
m++;
|
||||
if (verbose > 1) {
|
||||
printf("*** Failure with:\na = %d\neps = %d\n", a,eps);
|
||||
printf("*** Failure with:\na = %d\neps = %d\n",
|
||||
a,eps);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -235,7 +238,8 @@ define testln(str, n, eps, verbose)
|
||||
if (abs(c) > 0.5) {
|
||||
m++;
|
||||
if (verbose > 1) {
|
||||
printf("*** Failure with:\na = %d\neps = %d\n", a,eps);
|
||||
printf("*** Failure with:\na = %d\neps = %d\n",
|
||||
a,eps);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -19,8 +19,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.1 $
|
||||
* @(#) $Id: test2700.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: test2700.cal,v 30.2 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/test2700.cal,v $
|
||||
*
|
||||
* Under source code control: 1995/11/01 22:52:25
|
||||
@@ -127,7 +127,8 @@ define testcsqrt(str, n, verbose)
|
||||
if (p) {
|
||||
if (verbose > 0)
|
||||
printf(
|
||||
"*** Type %d failure for x = %r, y = %r, z = %d\n",
|
||||
"*** Type %d failure for x = %r, "
|
||||
"y = %r, z = %d\n",
|
||||
p, x, y, z);
|
||||
m++;
|
||||
}
|
||||
|
@@ -19,8 +19,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.1 $
|
||||
* @(#) $Id: test4000.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: test4000.cal,v 30.2 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/test4000.cal,v $
|
||||
*
|
||||
* Under source code control: 1996/03/13 02:38:45
|
||||
@@ -199,7 +199,8 @@ define ctimes(str, N, n, count, skip, verbose)
|
||||
p = ptest(A[i], count, skip);
|
||||
if (p) {
|
||||
if (verbose > 0) {
|
||||
printf("*** Error, what should be rare has occurred for x = %d \n", A[i]);
|
||||
printf("*** Error, what should be rare "
|
||||
"has occurred for x = %d \n", A[i]);
|
||||
m++;
|
||||
}
|
||||
}
|
||||
@@ -306,7 +307,8 @@ define ntimes(str, N, n, count, skip, residue, modulus, verbose)
|
||||
}
|
||||
tprev = round(usertime() - t, 4);
|
||||
if (verbose > 0) {
|
||||
printf("%d evaluations, nextcand: %d, prevcand: %d\n", n, tnext, tprev);
|
||||
printf("%d evaluations, nextcand: %d, "
|
||||
"prevcand: %d\n", n, tnext, tprev);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -19,8 +19,8 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.1 $
|
||||
* @(#) $Id: test8500.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
|
||||
* @(#) $Revision: 30.2 $
|
||||
* @(#) $Id: test8500.cal,v 30.2 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/test8500.cal,v $
|
||||
*
|
||||
* Under source code control: 1999/11/12 20:59:59
|
||||
@@ -134,8 +134,8 @@ define onetest_8500(a,b,rnd) {
|
||||
* The rounding parameter is randomly chosen.
|
||||
*
|
||||
* After a run of divmod_8500 the a, b, rnd values which gave failure are
|
||||
* stored in the list L_8500. L_8500[0], L_8500[1], L_8500[2] are a, b, rnd for the first
|
||||
* test, etc.
|
||||
* stored in the list L_8500. L_8500[0], L_8500[1], L_8500[2] are a, b,
|
||||
* rnd for the first* test, etc.
|
||||
*/
|
||||
define divmod_8500(N = 10, M1 = 2^128, M2 = 2^64, testnum = 0)
|
||||
{
|
||||
|
1641
cal/test8900.cal
Normal file
1641
cal/test8900.cal
Normal file
File diff suppressed because it is too large
Load Diff
362
cal/toomcook.cal
Normal file
362
cal/toomcook.cal
Normal file
@@ -0,0 +1,362 @@
|
||||
/*
|
||||
* Toom-Cook - implementation of Toom-Cook(3,4) multiplication algorithm
|
||||
*
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
*
|
||||
* Toom-Cook is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* Toom-Cook is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: toomcook.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/toomcook.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
/*
|
||||
* hide internal function from resource debugging
|
||||
*/
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
/* */
|
||||
define toomcook3(a,b){
|
||||
local alen blen a0 a1 a2 b0 b1 b2 m ret sign mask;
|
||||
local S0 S1 S2 S3 S4 T1 T2;
|
||||
|
||||
if(!isint(a) || !isint(b))
|
||||
return newerror("toomcook3(a,b): a and/or b is not an integer");
|
||||
|
||||
alen = digits(a,2);
|
||||
blen = digits(b,2);
|
||||
|
||||
sign = sgn(a) * sgn(b);
|
||||
/* sgn(x) returns 0 if x = 0 */
|
||||
if(sign == 0) return 0;
|
||||
|
||||
m = min(alen,blen)//3;
|
||||
mask = ~-(1<<m);
|
||||
|
||||
/*
|
||||
Cut-off at about 4,000 dec. digits
|
||||
TODO: check
|
||||
*/
|
||||
if(isdefined("test8900")){
|
||||
if(m < 20) return a*b;
|
||||
}
|
||||
else{
|
||||
if(m < 4096 ) return a*b;
|
||||
}
|
||||
a = abs(a);
|
||||
b = abs(b);
|
||||
|
||||
a0 = a & mask;
|
||||
a1 = (a>>m) & mask;
|
||||
a2 = (a>>(2*m));
|
||||
|
||||
b0 = b & mask;
|
||||
b1 = (b>>m) & mask;
|
||||
b2 = (b>>(2*m));
|
||||
|
||||
/*
|
||||
Zimmermann
|
||||
*/
|
||||
|
||||
S0 = toomcook3(a0 , b0);
|
||||
S1 = toomcook3((a2+a1+a0) , (b2+b1+b0));
|
||||
S2 = toomcook3(((a2<<2)+(a1<<1)+a0) , ((b2<<2)+(b1<<1)+b0));
|
||||
S3 = toomcook3((a2-a1+a0) , (b2-b1+b0));
|
||||
S4 = toomcook3(a2,b2);
|
||||
T1 = (S3<<1) + S2;
|
||||
T1 /= 3;
|
||||
T1 += S0;
|
||||
T1 >>= 1;
|
||||
T1 -= S4<<1;
|
||||
T2 = (S1 + S3)>>1;
|
||||
S1 -= T1;
|
||||
S2 = T2 - S0 - S4;
|
||||
S3 = T1 - T2;
|
||||
|
||||
ret = (S4<<(4*m)) + (S3<<(3*m)) + (S2<<(2*m)) + (S1<<(1*m)) + S0;
|
||||
|
||||
|
||||
ret = sign *ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
define toomcook3square(a){
|
||||
local alen a0 a1 a2 m tmp tmp2 ret sign S0 S1 S2 S3 S4 T1 mask;
|
||||
|
||||
if(!isint(a))return newerror("toomcook3square(a): a is not integer");
|
||||
|
||||
alen = digits(a,2);
|
||||
|
||||
sign = sgn(a) * sgn(a);
|
||||
if(sign == 0) return 0;
|
||||
|
||||
m = alen//3;
|
||||
mask = ~-(1<<m);
|
||||
/*
|
||||
Cut-off at about 5,000 dec. digits
|
||||
TODO: check
|
||||
*/
|
||||
|
||||
if(isdefined("test8900")){
|
||||
if(m < 20) return a^2;
|
||||
}
|
||||
else{
|
||||
if(m < 5000 ) return a^2;
|
||||
}
|
||||
|
||||
a = abs(a);
|
||||
|
||||
a0 = a & mask;
|
||||
a1 = (a>>m) & mask;
|
||||
a2 = (a>>(2*m));
|
||||
|
||||
/*
|
||||
Bodrato/Zanoni
|
||||
*/
|
||||
S0 = toomcook3square(a0);
|
||||
S1 = toomcook3square(a2+a1+a0);
|
||||
S2 = toomcook3square(a2-a1+a0);
|
||||
S3 = toomcook3(a1<<1,a2);
|
||||
S4 = toomcook3square(a2);
|
||||
|
||||
T1 = (S1 + S2)>>1;
|
||||
S1 = S1 - T1 - S3;
|
||||
S2 = T1 - S4 -S0;
|
||||
|
||||
|
||||
S1 = S1<<(1*m);
|
||||
S2 = S2<<(2*m);
|
||||
S3 = S3<<(3*m);
|
||||
S4 = S4<<(4*m);
|
||||
|
||||
ret = S0 + S1 + S2 + S3 + S4;
|
||||
ret = sign *ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
define toomcook4(a,b)
|
||||
{
|
||||
|
||||
local a0 a1 a2 a3 b0 b1 b2 b3 b4 ret tmp tmp2 tmp3 sign;
|
||||
local m alen blen mask;
|
||||
local w1, w2, w3, w4, w5, w6, w7;
|
||||
|
||||
if(!isint(a) || !isint(b))
|
||||
return newerror("toomcook4(a,b): a and/or b is not integer");
|
||||
|
||||
alen = digits(a,2);
|
||||
blen = digits(b,2);
|
||||
|
||||
sign = sgn(a) * sgn(b);
|
||||
|
||||
if(sign == 0) return 0;
|
||||
|
||||
m = min(alen//4,blen//4);
|
||||
mask = ~-(1<<m);
|
||||
|
||||
if(isdefined("test8900")){
|
||||
if(m < 100) return toomcook3(a,b);
|
||||
}
|
||||
else{
|
||||
if(m < 256*3072) return toomcook3(a,b);
|
||||
}
|
||||
|
||||
a = abs(a);
|
||||
b = abs(b);
|
||||
|
||||
|
||||
a0 = a & mask;
|
||||
a1 = (a>>m) & mask;
|
||||
a2 = (a>>(2*m)) & mask;
|
||||
a3 = (a>>(3*m));
|
||||
|
||||
b0 = b & mask;
|
||||
b1 = (b>>m) & mask;
|
||||
b2 = (b>>(2*m)) & mask;
|
||||
b3 = (b>>(3*m));
|
||||
|
||||
/*
|
||||
Bodrato / Zanoni
|
||||
*/
|
||||
|
||||
w3 = a3 + (a1 + (a2 + a0));
|
||||
w7 = b3 + (b1 + (b2 + b0));
|
||||
|
||||
w4 = -a3 + (-a1 + (a2 + a0));
|
||||
w5 = -b3 + (-b1 + (b2 + b0));
|
||||
|
||||
w3 = toomcook4(w3, w7);
|
||||
w4 = toomcook4(w4, w5);
|
||||
|
||||
w5 = a3 + ((a1<<2) + ((a2<<1) + (a0<<3)));
|
||||
w2 = b3 + ((b1<<2) + ((b2<<1) + (b0<<3)));
|
||||
|
||||
w6 = -a3 + (-(a1<<2) + ((a2<<1) + (a0<<3)));
|
||||
w7 = -b3 + (-(b1<<2) + ((b2<<1) + (b0<<3)));
|
||||
|
||||
w5 = toomcook4(w5, w2);
|
||||
w6 = toomcook4(w6, w7);
|
||||
|
||||
|
||||
w2 = (a3<<3) + ((a1<<1) + ((a2<<2) + a0));
|
||||
w7 = (b3<<3) + ((b1<<1) + ((b2<<2) + b0));
|
||||
|
||||
|
||||
w2 = toomcook4(w2, w7);
|
||||
|
||||
w1 = toomcook4(a3, b3);
|
||||
w7 = toomcook4(a0, b0);
|
||||
|
||||
w2 = w2 + w5;
|
||||
w6 = w5 - w6;
|
||||
w4 = w3 - w4;
|
||||
w5 = w5 - w1;
|
||||
w5 -= w7 << 6;
|
||||
w4 = w4>>1;
|
||||
w3 = w3 - w4;
|
||||
w5 = w5<<1;
|
||||
w5 = w5 - w6;
|
||||
w2 -= w3 * 65;
|
||||
w3 = w3 - w7;
|
||||
w3 = w3 - w1;
|
||||
w2 += w3 * 45;
|
||||
w5 -= w3<<3;
|
||||
w5 = w5//24;
|
||||
w6 = w6 - w2;
|
||||
w2 -= w4<<4;
|
||||
w2 = w2//18;
|
||||
w3 = w3 - w5;
|
||||
w4 = w4 - w2;
|
||||
w6 += w2 * 30;
|
||||
w6 = w6//60;
|
||||
w2 = w2 - w6;
|
||||
|
||||
|
||||
ret = w7 + (w6<<m) + (w5<<(2*m)) + (w4<<(3*m))+ (w3<<(4*m))+
|
||||
(w2<<(5*m))+ (w1<<(6*m));
|
||||
|
||||
ret = sign *ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
define toomcook4square(a){
|
||||
local a0 a1 a2 a3 ret S0 S1 S2 S3 S4 S5 S6 S7 tmp tmp2 tmp3;
|
||||
local sign m alen mask;
|
||||
local T0 T1 T2 T3 T4 T5 T6 T7 T8;
|
||||
|
||||
if(!isint(a) )return newerror("toomcook3square(a): a is not integer");
|
||||
|
||||
alen = digits(a,2);
|
||||
|
||||
sign = sgn(a) * sgn(a);
|
||||
/* sgn(x) returns 0 if x = 0 */
|
||||
if(sign == 0) return 0;
|
||||
|
||||
m = (alen)//4;
|
||||
mask = ~-( 1 << m );
|
||||
|
||||
/*
|
||||
cut-off at about 2 mio. dec. digits
|
||||
TODO: check!
|
||||
*/
|
||||
|
||||
if(isdefined("test8900")){
|
||||
if(m < 100) return toomcook3square(a);
|
||||
}
|
||||
else{
|
||||
if(m < 512*3072) return toomcook3square(a);
|
||||
}
|
||||
|
||||
a = abs(a);
|
||||
|
||||
a0 = a & mask;
|
||||
a1 = (a>>m) & mask;
|
||||
a2 = (a>>(2*m)) & mask;
|
||||
a3 = (a>>(3*m)) ;
|
||||
|
||||
/*
|
||||
Bodrato / Zanoni
|
||||
*/
|
||||
|
||||
S1 = toomcook4square(a0);
|
||||
S2 = toomcook4(a0<<1,a1);
|
||||
S3 = toomcook4((a0 + a1 - a2 - a3 ) , (a0 - a1 - a2 + a3 ));
|
||||
S4 = toomcook4square(a0 + a1 + a2 + a3 );
|
||||
S5 = toomcook4( (a0 - a2 )<<1 , (a1 - a3 ));
|
||||
S6 = toomcook4(a3<<1 , a2);
|
||||
S7 = toomcook4square(a3);
|
||||
|
||||
T1 = S3 + S4;
|
||||
T2 = (T1 + S5 )>>1;
|
||||
T3 = S2 + S6;
|
||||
T4 = T2 - T3;
|
||||
T5 = T3 - S5;
|
||||
T6 = T4 - S3;
|
||||
T7 = T4 - S1;
|
||||
T8 = T6 - S7;
|
||||
|
||||
ret = (S7<<(6*m)) + (S6<<(5*m)) + (T7<<(4*m))
|
||||
+ (T5<<(3*m)) + (T8<<(2*m)) + (S2<<(1*m)) + S1;
|
||||
|
||||
ret = sign *ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
TODO: Implement the asymmetric variations
|
||||
*/
|
||||
|
||||
/*
|
||||
produce_long_random_number(n) returns large pseudorandom numbers. Really large
|
||||
numbers, e.g.:
|
||||
produce_long_random_number(16)
|
||||
is ca 4,128,561 bits (ca 1,242,821 dec. digits) large. Exact length is not
|
||||
predeterminable because of the chaotic output of the function random().
|
||||
*/
|
||||
define __CZ__produce_long_random_number(n)
|
||||
{
|
||||
local ret k;
|
||||
ret = 1;
|
||||
if(!isint(n) || n<1)
|
||||
return newerror("__CZ__produce_long_random_number(n): "
|
||||
"n is not an integer >=1");
|
||||
for(k=0;k<n;k++){
|
||||
ret += random();
|
||||
ret = toomcook4square(ret);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
* report important interface functions
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "toomcook3(a,b)";
|
||||
print "toomcook3square(a)";
|
||||
print "toomcook4(a,b)";
|
||||
print "toomcook4square(a)";
|
||||
}
|
114
cal/zeta2.cal
Normal file
114
cal/zeta2.cal
Normal file
@@ -0,0 +1,114 @@
|
||||
/*
|
||||
* zeta2 - Hurwitz Zeta function
|
||||
* Copyright (C) 2013 Christoph Zurnieden
|
||||
* Version: 0.0.1
|
||||
* Licence: GPL
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* @(#) $Revision: 30.3 $
|
||||
* @(#) $Id: zeta2.cal,v 30.3 2013/08/11 08:41:38 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/zeta2.cal,v $
|
||||
*
|
||||
* Under source code control: 2013/08/11 01:31:28
|
||||
* File existed as early as: 2013
|
||||
*/
|
||||
|
||||
/*
|
||||
* hide internal function from resource debugging
|
||||
*/
|
||||
static resource_debug_level;
|
||||
resource_debug_level = config("resource_debug", 0);
|
||||
|
||||
|
||||
define hurwitzzeta(s,a){
|
||||
local realpart_a imagpart_s tmp tmp1 tmp2 tmp3;
|
||||
local sum1 sum2 sum3 i k n precision result limit;
|
||||
local limit_function offset offset_squared rest_sum eps;
|
||||
/*
|
||||
According to Linas Vepstas' "An efficient algorithm for accelerating
|
||||
the convergence of oscillatory series, useful for computing the
|
||||
polylogarithm and Hurwitz zeta functions" the Euler-Maclaurin series
|
||||
is the fastest in most cases.
|
||||
|
||||
With a lot of help of the PARI/GP implementation by Prof. Henri Cohen,
|
||||
hence the different license.
|
||||
*/
|
||||
eps=epsilon( epsilon() * 1e-3);
|
||||
realpart_a=re(a);
|
||||
if(realpart_a>1.5){
|
||||
tmp=floor(realpart_a-0.5);
|
||||
sum1 = 0;
|
||||
for( i = 1 ; i <= tmp ; i++){
|
||||
sum1 += ( a - i )^( -s );
|
||||
}
|
||||
epsilon(eps);
|
||||
return (hurwitzzeta(s,a-tmp)-sum1);
|
||||
}
|
||||
if(realpart_a<=0){
|
||||
tmp=ceil(-realpart_a+0.5);
|
||||
for( i = 0 ; i <= tmp-1 ; i++){
|
||||
sum2 += ( a + i )^( -s );
|
||||
}
|
||||
epsilon(eps);
|
||||
return (hurwitzzeta(s,a+tmp)+sum2);
|
||||
}
|
||||
precision=digits(1/epsilon());
|
||||
realpart_a=re(s);
|
||||
imagpart_s=im(s);
|
||||
epsilon(1e-9);
|
||||
result=s-1.;
|
||||
if(abs(result)<0.1){
|
||||
result=-1;
|
||||
}
|
||||
else
|
||||
result=ln(result);
|
||||
limit=(precision*ln(10)-re((s-.5)*result)+(1.*realpart_a)*ln(2.*pi()))/2;
|
||||
limit=max(2,ceil(max(limit,abs(s*1.)/2)));
|
||||
limit_function=ceil(sqrt((limit+realpart_a/2-.25)^2+(imagpart_s*1.)^2/4)/
|
||||
pi());
|
||||
if (config("user_debug") > 0) {
|
||||
print "limit_function = " limit_function;
|
||||
print "limit = " limit;
|
||||
print "prec = " precision;
|
||||
}
|
||||
/* Full precison plus 5 digits angstzuschlag*/
|
||||
epsilon( (10^(-precision)) * 1e-5);
|
||||
tmp3=(a+limit_function+0.)^(-s);
|
||||
sum3 = tmp3/2;
|
||||
for(n=0;n<=limit_function-1;n++){
|
||||
sum3 += (a+n)^(-s);
|
||||
}
|
||||
result=sum3;
|
||||
offset=a+limit_function;
|
||||
offset_squared=1./(offset*offset);
|
||||
tmp1=2*s-1;
|
||||
tmp2=s*(s-1);
|
||||
rest_sum=bernoulli(2*limit);
|
||||
for(k=2*limit-2;k>=2;k-=2){
|
||||
rest_sum=bernoulli(k)+offset_squared*
|
||||
(k*k+tmp1*k+tmp2)*rest_sum/((k+1)*(k+2));
|
||||
}
|
||||
rest_sum=offset*(1+offset_squared*tmp2*rest_sum/2);
|
||||
result+=rest_sum*tmp3/(s-1);
|
||||
epsilon(eps);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* restore internal function from resource debugging
|
||||
* report important interface functions
|
||||
*/
|
||||
config("resource_debug", resource_debug_level),;
|
||||
if (config("resource_debug") & 3) {
|
||||
print "hurwitzzeta(s,a)";
|
||||
}
|
Reference in New Issue
Block a user