mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.11.0t10.5.1
This commit is contained in:
@@ -1,161 +0,0 @@
|
||||
/*
|
||||
* seedrandom - seed the cryptographically strong Blum generator
|
||||
*
|
||||
* Copyright (C) 1999 Landon Curt Noll
|
||||
*
|
||||
* Calc is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* @(#) $Revision: 29.1 $
|
||||
* @(#) $Id: seedrandom.cal,v 29.1 1999/12/14 09:15:33 chongo Exp $
|
||||
* @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/seedrandom.cal,v $
|
||||
*
|
||||
* Under source code control: 1996/01/01 08:21:00
|
||||
* File existed as early as: 1996
|
||||
*
|
||||
* chongo <was here> /\oo/\ http://reality.sgi.com/chongo/
|
||||
* Share and enjoy! :-) http://reality.sgi.com/chongo/tech/comp/calc/
|
||||
*/
|
||||
|
||||
/*
|
||||
* The period of Blum generators with modulus 'n=p*q' (where p and
|
||||
* q are primes 3 mod 4) is:
|
||||
*
|
||||
* lambda(n) = lcm(factors of p-1 & q-1)
|
||||
*
|
||||
* One can construct a generator with a maximal period when
|
||||
* 'p' and 'q' have the fewest possible factors in common.
|
||||
* The quickest way to select such primes is only use 'p'
|
||||
* and 'q' when '(p-1)/2' and '(q-1)/2' are both primes.
|
||||
* This function will seed the random() generator that uses
|
||||
* such primes.
|
||||
*
|
||||
* given:
|
||||
* seed1 - a large random value (at least 10^20 and perhaps < 10^314)
|
||||
* seed2 - a large random value (at least 10^20 and perhaps < 10^314)
|
||||
* size - min Blum modulus as a power of 2 (at least 32, perhaps >= 512)
|
||||
* trials - number of ptest() trials (default 25)
|
||||
*
|
||||
* returns:
|
||||
* the previous random state
|
||||
*
|
||||
* NOTE: The [10^20, 10^314) range comes from the fact that the 13th internal
|
||||
* modulus is ~10^315. We want the lower bound seed to be reasonably big.
|
||||
*/
|
||||
|
||||
|
||||
define seedrandom(seed1, seed2, size, trials)
|
||||
{
|
||||
local p; /* first Blum prime */
|
||||
local fp; /* prime co-factor of p-1 */
|
||||
local sp; /* min bit size of p */
|
||||
local q; /* second Blum prime */
|
||||
local fq; /* prime co-factor of q-1 */
|
||||
local sq; /* min bit size of q */
|
||||
local n; /* Blum modulus */
|
||||
local binsize; /* smallest power of 2 > n=p*q */
|
||||
local r; /* initial quadratic residue */
|
||||
local random_state; /* the initial rand state */
|
||||
local random_junk; /* rand state that is not needed */
|
||||
local old_state; /* old random state to return */
|
||||
|
||||
/*
|
||||
* firewall
|
||||
*/
|
||||
if (!isint(seed1)) {
|
||||
quit "1st arg (seed1) is not an int";
|
||||
}
|
||||
if (!isint(seed2)) {
|
||||
quit "2nd arg (seed2) is not an int";
|
||||
}
|
||||
if (!isint(size)) {
|
||||
quit "3rd arg (size) is not an int";
|
||||
}
|
||||
if (!isint(trials)) {
|
||||
trials = 25;
|
||||
}
|
||||
if (digits(seed1) <= 20) {
|
||||
quit "1st arg (seed1) must be > 10^20 and perhaps < 10^314";
|
||||
}
|
||||
if (digits(seed2) <= 20) {
|
||||
quit "2nd arg (seed2) must be > 10^20 and perhaps < 10^314";
|
||||
}
|
||||
if (size < 32) {
|
||||
quit "3rd arg (size) needs to be >= 32 (perhaps >= 512)";
|
||||
}
|
||||
if (trials < 1) {
|
||||
quit "4th arg (trials) must be > 0";
|
||||
}
|
||||
|
||||
/*
|
||||
* determine the search parameters
|
||||
*/
|
||||
++size; /* convert power of 2 to bit length */
|
||||
sp = int((size/2)-(size*0.03)+1);
|
||||
sq = size - sp;
|
||||
|
||||
/*
|
||||
* find the first Blum prime
|
||||
*/
|
||||
random_state = srandom(seed1, 13);
|
||||
do {
|
||||
do {
|
||||
fp = nextcand(2^sp+randombit(sp), 1, 1, 3, 4);
|
||||
p = 2*fp+1;
|
||||
} while (ptest(p,1,0) == 0);
|
||||
} while(ptest(p, trials) == 0 || ptest(fp, trials) == 0);
|
||||
if (config("resource_debug") & 3) {
|
||||
print "/* 1st Blum prime */ p=", p;
|
||||
}
|
||||
|
||||
/*
|
||||
* find the 2nd Blum prime
|
||||
*/
|
||||
random_junk = srandom(seed2, 13);
|
||||
do {
|
||||
do {
|
||||
fq = nextcand(2^sq+randombit(sq), 1, 1, 3, 4);
|
||||
q = 2*fq+1;
|
||||
} while (ptest(q,1,0) == 0);
|
||||
} while(ptest(q, trials) == 0 || ptest(fq, trials) == 0);
|
||||
if (config("resource_debug") & 3) {
|
||||
print "/* 2nd Blum prime */ q=", q;
|
||||
}
|
||||
|
||||
/*
|
||||
* seed the Blum generator
|
||||
*/
|
||||
n = p*q; /* the Blum modulus */
|
||||
binsize = highbit(n)+1; /* smallest power of 2 > p*q */
|
||||
r = pmod(rand(1<<ceil(binsize*4/5), 1<<(binsize-2)), 2, n);
|
||||
if (config("resource_debug") & 3) {
|
||||
print "/* seed quadratic residue */ r=", r;
|
||||
print "/* newn", binsize, "bit quadratic residue*/ newn=", n;
|
||||
}
|
||||
old_state = srandom(r, n);
|
||||
|
||||
/*
|
||||
* restore other states that we altered
|
||||
*/
|
||||
random_junk = srandom(random_state);
|
||||
|
||||
/*
|
||||
* return the previous random state
|
||||
*/
|
||||
return old_state;
|
||||
}
|
||||
|
||||
if (config("resource_debug") & 3) {
|
||||
print "seedrandom(seed1, seed2, size [, trials]) defined";
|
||||
}
|
Reference in New Issue
Block a user