mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.11.0t10.3
This commit is contained in:
14
CHANGES
14
CHANGES
@@ -26,6 +26,20 @@ The following are the changes from calc version 2.11.0t10 to date:
|
||||
domul() function in zmil.c thanks to a patch by Ernest Bowen
|
||||
<ernie@turing.une.edu.au>.
|
||||
|
||||
Added zero dimensional matrices. A zero dimensional matrix is defined as:
|
||||
|
||||
mat A[] or A = mat[]
|
||||
|
||||
Updated the help/mat file to reflect the current status of matrices
|
||||
including zero dimensional matrices.
|
||||
|
||||
Added indices() builtin function as written by Ernest Bowen
|
||||
<ernie@turing.une.edu.au> developed from an idea of Klaus Seistrup
|
||||
<klaus@seistrup.dk>. See help/indices for details.
|
||||
|
||||
Fixed a number of insure warnings as reported by Michel van der List
|
||||
<vanderlistmj@sbphrd.com>.
|
||||
|
||||
|
||||
The following are the changes from calc version 2.11.0t8.9.1 to 2.11.0t9.4.5:
|
||||
|
||||
|
25
assocfunc.c
25
assocfunc.c
@@ -47,8 +47,8 @@ associndex(ASSOC *ap, BOOL create, long dim, VALUE *indices)
|
||||
QCKHASH hash;
|
||||
int i;
|
||||
|
||||
if (dim <= 0) {
|
||||
math_error("No dimensions for indexing association");
|
||||
if (dim < 0) {
|
||||
math_error("Negative dimension for indexing association");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
|
||||
@@ -217,6 +217,27 @@ assocfindex(ASSOC *ap, long index)
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Returns the list of indices for an association element with specified
|
||||
* double-bracket index.
|
||||
*/
|
||||
LIST *
|
||||
associndices(ASSOC *ap, long index)
|
||||
{
|
||||
ASSOCELEM *ep;
|
||||
LIST *lp;
|
||||
int i;
|
||||
|
||||
ep = elemindex(ap, index);
|
||||
if (ep == NULL)
|
||||
return NULL;
|
||||
lp = listalloc();
|
||||
for (i = 0; i < ep->e_dim; i++)
|
||||
insertlistlast(lp, &ep->e_indices[i]);
|
||||
return lp;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compare two associations to see if they are identical.
|
||||
* Returns TRUE if they are different.
|
||||
|
@@ -336,3 +336,5 @@ E_STRCPY Bad argument type for strcpy
|
||||
E_STRNCPY Bad argument type for strncpy
|
||||
E_BACKSLASH Bad argument type for unary backslash
|
||||
E_SETMINUS Bad argument type for setminus
|
||||
E_INDICES1 Bad first argument type for indices
|
||||
E_INDICES2 Bad second argument for indices
|
||||
|
87
codegen.c
87
codegen.c
@@ -1135,6 +1135,21 @@ getonematrix(int symtype)
|
||||
}
|
||||
rescantoken();
|
||||
|
||||
if (gettoken() == T_LEFTPAREN) {
|
||||
if (isrvalue(getexprlist())) {
|
||||
scanerror(T_SEMICOLON, "Lvalue expected");
|
||||
return;
|
||||
}
|
||||
if (gettoken() != T_RIGHTPAREN) {
|
||||
scanerror(T_SEMICOLON, "Missing right parenthesis");
|
||||
return;
|
||||
}
|
||||
getonematrix(symtype);
|
||||
addop(OP_ASSIGN);
|
||||
return;
|
||||
}
|
||||
rescantoken();
|
||||
|
||||
if (gettoken() != T_LEFTBRACKET) {
|
||||
rescantoken();
|
||||
scanerror(T_SEMICOLON, "Left-bracket expected");
|
||||
@@ -1150,6 +1165,7 @@ getonematrix(int symtype)
|
||||
* will patch the correct value back into the opcode.
|
||||
*/
|
||||
if (gettoken() == T_RIGHTBRACKET) {
|
||||
if (gettoken() == T_ASSIGN) {
|
||||
clearopt();
|
||||
patchpc = curfunc->f_opcodecount + 1;
|
||||
addopone(OP_NUMBER, (long) -1);
|
||||
@@ -1159,16 +1175,24 @@ getonematrix(int symtype)
|
||||
addop(OP_ZERO);
|
||||
addop(OP_INITFILL);
|
||||
count = 0;
|
||||
if (gettoken() == T_ASSIGN)
|
||||
count = getinitlist();
|
||||
else
|
||||
rescantoken();
|
||||
index = addqconstant(itoq(count));
|
||||
if (index < 0)
|
||||
math_error("Cannot allocate constant");
|
||||
curfunc->f_opcodes[patchpc] = index;
|
||||
return;
|
||||
}
|
||||
rescantoken();
|
||||
addopone(OP_MATCREATE, 0);
|
||||
if (gettoken() == T_LEFTBRACKET) {
|
||||
creatematrix();
|
||||
} else {
|
||||
rescantoken();
|
||||
addop(OP_ZERO);
|
||||
}
|
||||
addop(OP_INITFILL);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* This isn't implicit, so we expect expressions for the bounds.
|
||||
@@ -1186,26 +1210,10 @@ creatematrix(void)
|
||||
{
|
||||
long dim;
|
||||
|
||||
dim = 1;
|
||||
dim = 0;
|
||||
|
||||
while (TRUE) {
|
||||
(void) getopassignment();
|
||||
switch (gettoken()) {
|
||||
case T_RIGHTBRACKET:
|
||||
case T_COMMA:
|
||||
rescantoken();
|
||||
addop(OP_ONE);
|
||||
addop(OP_SUB);
|
||||
addop(OP_ZERO);
|
||||
break;
|
||||
case T_COLON:
|
||||
(void) getopassignment();
|
||||
break;
|
||||
default:
|
||||
rescantoken();
|
||||
}
|
||||
switch (gettoken()) {
|
||||
case T_RIGHTBRACKET:
|
||||
for (;;) {
|
||||
if (gettoken() == T_RIGHTBRACKET) {
|
||||
addopone(OP_MATCREATE, dim);
|
||||
if (gettoken() == T_LEFTBRACKET) {
|
||||
creatematrix();
|
||||
@@ -1215,12 +1223,32 @@ creatematrix(void)
|
||||
}
|
||||
addop(OP_INITFILL);
|
||||
return;
|
||||
case T_COMMA:
|
||||
if (++dim <= MAXDIM)
|
||||
break;
|
||||
}
|
||||
rescantoken();
|
||||
if (++dim > MAXDIM) {
|
||||
scanerror(T_SEMICOLON, "Only %ld dimensions allowed", MAXDIM);
|
||||
return;
|
||||
}
|
||||
(void) getopassignment();
|
||||
switch (gettoken()) {
|
||||
case T_RIGHTBRACKET:
|
||||
rescantoken();
|
||||
case T_COMMA:
|
||||
addop(OP_ONE);
|
||||
addop(OP_SUB);
|
||||
addop(OP_ZERO);
|
||||
break;
|
||||
case T_COLON:
|
||||
(void) getopassignment();
|
||||
switch(gettoken()) {
|
||||
case T_RIGHTBRACKET:
|
||||
rescantoken();
|
||||
case T_COMMA:
|
||||
continue;
|
||||
}
|
||||
/*FALLTHRU*/
|
||||
default:
|
||||
rescantoken();
|
||||
scanerror(T_SEMICOLON, "Illegal matrix definition");
|
||||
return;
|
||||
}
|
||||
@@ -2191,8 +2219,14 @@ getmatargs(void)
|
||||
* finds that the element will be referenced for writing, then
|
||||
* it will call writeindexop to change the flag in the opcode.
|
||||
*/
|
||||
dim = 1;
|
||||
dim = 0;
|
||||
if (gettoken() == T_RIGHTBRACKET) {
|
||||
addoptwo(OP_INDEXADDR, (long) dim, (long) FALSE);
|
||||
return;
|
||||
}
|
||||
rescantoken();
|
||||
for (;;) {
|
||||
++dim;
|
||||
(void) getopassignment();
|
||||
switch (gettoken()) {
|
||||
case T_RIGHTBRACKET:
|
||||
@@ -2200,7 +2234,6 @@ getmatargs(void)
|
||||
(long) FALSE);
|
||||
return;
|
||||
case T_COMMA:
|
||||
dim++;
|
||||
break;
|
||||
default:
|
||||
rescantoken();
|
||||
|
46
func.c
46
func.c
@@ -91,6 +91,8 @@ extern CONST char *error_table[E__COUNT+2]; /* calc coded error messages */
|
||||
extern void matrandperm(MATRIX *M);
|
||||
extern void listrandperm(LIST *lp);
|
||||
extern int idungetc(FILEID id, int ch);
|
||||
extern LIST* associndices(ASSOC *ap, long index);
|
||||
extern LIST* matindices(MATRIX *mp, long index);
|
||||
|
||||
extern int stoponerror;
|
||||
|
||||
@@ -3558,7 +3560,7 @@ f_mattrans(VALUE *vp)
|
||||
|
||||
if (vp->v_type != V_MAT)
|
||||
return error_value(E_MATTRANS1);
|
||||
if (vp->v_mat->m_dim != 2)
|
||||
if (vp->v_mat->m_dim > 2)
|
||||
return error_value(E_MATTRANS2);
|
||||
result.v_type = V_MAT;
|
||||
result.v_mat = mattrans(vp->v_mat);
|
||||
@@ -3569,15 +3571,8 @@ f_mattrans(VALUE *vp)
|
||||
static VALUE
|
||||
f_det(VALUE *vp)
|
||||
{
|
||||
MATRIX *m;
|
||||
|
||||
if (vp->v_type != V_MAT)
|
||||
return error_value(E_DET1);
|
||||
m = vp->v_mat;
|
||||
if (m->m_dim != 2)
|
||||
return error_value(E_DET2);
|
||||
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1]))
|
||||
return error_value(E_DET3);
|
||||
|
||||
return matdet(vp->v_mat);
|
||||
}
|
||||
@@ -4464,6 +4459,36 @@ f_assoc(int count, VALUE **vals)
|
||||
}
|
||||
|
||||
|
||||
static VALUE
|
||||
f_indices(VALUE *v1, VALUE *v2)
|
||||
{
|
||||
VALUE result;
|
||||
LIST *lp;
|
||||
|
||||
if (v2->v_type != V_NUM || zge31b(v2->v_num->num))
|
||||
return error_value(E_INDICES2);
|
||||
|
||||
switch (v1->v_type) {
|
||||
case V_ASSOC:
|
||||
lp = associndices(v1->v_assoc, qtoi(v2->v_num));
|
||||
break;
|
||||
case V_MAT:
|
||||
lp = matindices(v1->v_mat, qtoi(v2->v_num));
|
||||
break;
|
||||
default:
|
||||
return error_value(E_INDICES1);
|
||||
}
|
||||
|
||||
result.v_type = V_NULL;
|
||||
result.v_subtype = V_NOSUBTYPE;
|
||||
if (lp) {
|
||||
result.v_type = V_LIST;
|
||||
result.v_list = lp;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static VALUE
|
||||
f_listinsert(int count, VALUE **vals)
|
||||
{
|
||||
@@ -6763,10 +6788,9 @@ f_blk(int count, VALUE **vals)
|
||||
result.v_type = V_BLOCK;
|
||||
result.v_subtype = V_NOSUBTYPE;
|
||||
|
||||
vp = *vals;
|
||||
type = 0;
|
||||
result.v_subtype = V_NOSUBTYPE;
|
||||
if (count > 0) {
|
||||
vp = *vals;
|
||||
type = vp->v_type;
|
||||
if (type == V_STR || type == V_NBLOCK || type == V_BLOCK) {
|
||||
vals++;
|
||||
@@ -7552,6 +7576,8 @@ static CONST struct builtin builtins[] = {
|
||||
"integral log of a number base 2"},
|
||||
{"im", 1, 1, 0, OP_IM, 0, 0,
|
||||
"imaginary part of complex number"},
|
||||
{"indices", 2, 2, 0, OP_NOP, 0, f_indices,
|
||||
"indices of a specified assoc or mat value"},
|
||||
{"inputlevel", 0, 0, 0, OP_NOP, 0, f_inputlevel,
|
||||
"current input depth"},
|
||||
{"insert", 2, IN, FA, OP_NOP, 0, f_listinsert,
|
||||
|
@@ -104,16 +104,16 @@ BLT_HELP_FILES= ${BLT_HELP_FILES_3} ${BLT_HELP_FILES_5} \
|
||||
# This list is prodiced by the detaillist rule when no WARNINGS are detected.
|
||||
#
|
||||
DETAIL_HELP= abs access acos acosh acot acoth acsc acsch address agd append \
|
||||
appr arg arrow asec asech asin asinh assign atan atan2 atanh avg \
|
||||
base bit blk blkcpy blkfree blocks bround btrunc calclevel ceil \
|
||||
cfappr cfsim char cmdbuf cmp comb conj cos cosh cot coth count cp \
|
||||
csc csch ctime delete den dereference det digit digits dp epsilon \
|
||||
errcount errmax errno error eval exp fact factor fclose fcnt feof \
|
||||
ferror fflush fgetc fgetfield fgetline fgets fgetstr fib files \
|
||||
floor fopen forall fprintf fputc fputs fputstr frac free freeglobals \
|
||||
freeredc freestatics frem freopen fscan fscanf fseek fsize ftell gcd \
|
||||
gcdrem gd getenv hash head highbit hmean hnrmod hypot ilog ilog10 \
|
||||
ilog2 im inputlevel insert int inverse iroot isassoc isatty isblk \
|
||||
appr arg arrow asec asech asin asinh assign atan atan2 atanh avg base \
|
||||
bit blk blkcpy blkfree blocks bround btrunc calclevel ceil cfappr \
|
||||
cfsim char cmdbuf cmp comb conj cos cosh cot coth count cp csc csch \
|
||||
ctime delete den dereference det digit digits dp epsilon errcount \
|
||||
errmax errno error eval exp fact factor fclose fcnt feof ferror \
|
||||
fflush fgetc fgetfield fgetline fgets fgetstr fib files floor fopen \
|
||||
forall fprintf fputc fputs fputstr frac free freeglobals freeredc \
|
||||
freestatics frem freopen fscan fscanf fseek fsize ftell gcd gcdrem \
|
||||
gd getenv hash head highbit hmean hnrmod hypot ilog ilog10 ilog2 \
|
||||
im indices inputlevel insert int inverse iroot isassoc isatty isblk \
|
||||
isconfig isdefined iserror iseven isfile ishash isident isint islist \
|
||||
ismat ismult isnull isnum isobj isobjtype isodd isprime isptr isqrt \
|
||||
isrand israndom isreal isrel issimple issq isstr istype jacobi join \
|
||||
|
58
help/indices
Normal file
58
help/indices
Normal file
@@ -0,0 +1,58 @@
|
||||
NAME
|
||||
indices - indices for specified matrix or association element
|
||||
|
||||
SYNOPSIS
|
||||
indices(V, index)
|
||||
|
||||
TYPES
|
||||
V matrix or association
|
||||
index integer
|
||||
|
||||
return list with up to 4 elements
|
||||
|
||||
DESCRIPTION
|
||||
For 0 <= index < size(V), indices(V, index) returns list(i_0, i_1, ...)
|
||||
for which V[i_0, i_1, ...] is the same lvalue as V[[index]].
|
||||
|
||||
For other values of index, a null value is returned.
|
||||
|
||||
This function can be useful for determining those elements for which
|
||||
the indices satisfy some condition. This is particularly so for
|
||||
associations since these have no simple relation between the
|
||||
double-bracket index and the single-bracket indices, which may be
|
||||
non-integer numbers or strings or other types of value. The
|
||||
information provided by indices() is often required after the use
|
||||
of search() or rsearch() which, when successful, return the
|
||||
double-bracket index of the item found.
|
||||
|
||||
EXAMPLE
|
||||
> mat M[2,3,1:5]
|
||||
|
||||
> indices(M, 11)
|
||||
list (3 elements, 2 nonzero):
|
||||
[[0]] = 0
|
||||
[[1]] = 2
|
||||
[[2]] = 2
|
||||
|
||||
> A = assoc();
|
||||
|
||||
> A["cat", "dog"] = "fight";
|
||||
> A[2,3,5,7] = "primes";
|
||||
> A["square", 3] = 9
|
||||
|
||||
> indices(A, search(A, "primes"))
|
||||
list (4 elements, 4 nonzero):
|
||||
[[0]] = 2
|
||||
[[1]] = 3
|
||||
[[2]] = 5
|
||||
[[3]] = 7
|
||||
|
||||
LIMITS
|
||||
abs(index) < 2^31
|
||||
|
||||
LIBRARY
|
||||
LIST* associndices(ASSOC *ap, long index)
|
||||
LIST* matindices(MATRIX *mp, long index)
|
||||
|
||||
SEE ALSO
|
||||
assoc, mat
|
457
help/mat
457
help/mat
@@ -1,102 +1,397 @@
|
||||
Using matrices
|
||||
NAME
|
||||
mat - keyword to create a matrix value
|
||||
|
||||
Matrices can have from 1 to 4 dimensions, and are indexed by a
|
||||
normal-sized integer. The lower and upper bounds of a matrix can
|
||||
be specified at runtime. The elements of a matrix are defaulted
|
||||
to zeroes, but can be assigned to be of any type. Thus matrices
|
||||
can hold complex numbers, strings, objects, etc. Matrices are
|
||||
stored in memory as an array so that random access to the elements
|
||||
is easy.
|
||||
SYNOPSIS
|
||||
mat [index-range-list] [ = {value_0. ...} ]
|
||||
mat [] [= {value_0, ...}]
|
||||
mat variable_1 ... [index-range-list] [ = {value_0, ...} ]
|
||||
mat variable_1 ... [] [ = {value_0, ...} ]
|
||||
|
||||
Matrices are normally indexed using square brackets. If the matrix
|
||||
is multi-dimensional, then an element can be indexed either by
|
||||
using multiple pairs of square brackets (as in C), or else by
|
||||
separating the indexes by commas. Thus the following two statements
|
||||
reference the same matrix element:
|
||||
mat [index-range-list_1[index-ranges-list_2] ... [ = { { ...} ...} ]
|
||||
|
||||
x = name[3][5];
|
||||
x = name[3,5];
|
||||
decl id_1 id_2 ... [index-range-list] ...
|
||||
|
||||
The double-square bracket operator can be used on any matrix to
|
||||
make references to the elements easy and efficient. This operator
|
||||
bypasses the normal indexing mechanism, and treats the array as if
|
||||
it was one-dimensional and with a lower bound of zero. In this
|
||||
indexing mode, elements correspond to the normal indexing mode where
|
||||
the rightmost index increases most frequently. For example, when
|
||||
using double-square bracket indexing on a two-dimensional matrix,
|
||||
increasing indexes will reference the matrix elements left to right,
|
||||
row by row. Thus in the following example, 'x' and 'y' are copied
|
||||
from the same matrix element:
|
||||
TYPES
|
||||
index-range-list range_1 [, range_2, ...] up to 4 ranges
|
||||
range_1, ... integer, or integer_1 : integer_2
|
||||
value, value_1, ... any
|
||||
variable_1 ... lvalue
|
||||
decl declarator = global, static or local
|
||||
id_1, ... identifier
|
||||
|
||||
mat m[1:2, 1:3];
|
||||
x = m[2,1];
|
||||
y = m[[3]];
|
||||
DESCRIPTION
|
||||
The expression mat [index-range-list] returns a matrix value.
|
||||
This may be assigned to one or more lvalues A, B, ... by either
|
||||
|
||||
There are functions which return information about a matrix.
|
||||
The 'size' functions returns the total number of elements.
|
||||
The 'matdim', 'matmin', and 'matmax' functions return the number
|
||||
of dimensions of a matrix, and the lower and upper index bounds
|
||||
for a dimension of a matrix. For square matrices, the 'det'
|
||||
function calculates the determinant of the matrix.
|
||||
mat A B ... [index-range-list]
|
||||
|
||||
Some functions return matrices as their results. These functions
|
||||
do not affect the original matrix argument, but instead return
|
||||
new matrices. For example, the 'mattrans' function returns the
|
||||
transpose of a matrix, and 'inverse' returns the inverse of a
|
||||
matrix. So to invert a matrix called 'x', you could use:
|
||||
or
|
||||
|
||||
x = inverse(x);
|
||||
A = B = ... = mat[index-range-list]
|
||||
|
||||
The 'matfill' function fills all elements of a matrix with the
|
||||
specified value, and optionally fills the diagonal elements of a
|
||||
square matrix with a different value. For example:
|
||||
If a variable is specified by an expression that is not a symbol with
|
||||
possibly object element specifiers, the expression should be enclosed
|
||||
in parentheses. For example, parentheses are required in
|
||||
mat (A[2]) [3] and mat (*p) [3] but mat P.x [3] is acceptable.
|
||||
|
||||
matfill(x,1);
|
||||
When an index-range is specified as integer_1 : integer_2, where
|
||||
integer_1 and integer_2 are expressions which evaluate to integers,
|
||||
the index-range consists of all integers from the minimum of the
|
||||
two integers to the maximum of the two integers. For example,
|
||||
mat[2:5, 0:4] and mat[5:2, 4:0] return the same matrix value.
|
||||
|
||||
will fill any matrix with ones, and:
|
||||
If an index-range is an expression which evaluates to an integer,
|
||||
the range is as if specified by 0 : integer - 1. For example,
|
||||
mat[4] and mat[0:3] return the same 4-element matrix; mat[-2] and
|
||||
mat[-3:0] return the same 4-element matrix.
|
||||
|
||||
matfill(x, 0, 1);
|
||||
If the variable A has a matrix value, then for integer indices
|
||||
i_1, i_2, ..., equal in number to the number of ranges specified at
|
||||
its creation, and such that each index is in the corresponding range,
|
||||
the matrix element associated with those index list is given as an
|
||||
lvalue by the expressions A[i_1, i_2, ...].
|
||||
|
||||
will create an identity matrix out of any square matrix. Note that
|
||||
unlike most matrix functions, this function does not return a matrix
|
||||
value, but manipulates the matrix argument itself.
|
||||
The elements of the matrix are stored internally as a linear array
|
||||
in which locations are arranged in order of increasing indices.
|
||||
For example, in order of location, the six element of A = mat [2,3]
|
||||
are
|
||||
|
||||
Matrices can be multiplied by numbers, which multiplies each element
|
||||
by the number. Matrices can also be negated, conjugated, shifted,
|
||||
rounded, truncated, fractioned, and modulo'ed. Each of these
|
||||
operations is applied to each element.
|
||||
A[0,0], A[0,1], A[0,2], A[1,0], A[1,,1], A[1,2].
|
||||
|
||||
Matrices can be added or multiplied together if the operation is
|
||||
legal. Note that even if the dimensions of matrices are compatible,
|
||||
operations can still fail because of mismatched lower bounds. The
|
||||
lower bounds of two matrices must either match, or else one of them
|
||||
must have a lower bound of zero. Thus the following code:
|
||||
These elements may also be specified using the double-bracket operator
|
||||
with a single integer index as in A[[0]], A[[1]], ..., A[[5]].
|
||||
If p is assigned the value &A[0.0], the address of A[[i]] for 0 <= i < 6
|
||||
is p + i as long as A exists and a new value is not assigned to A.
|
||||
|
||||
mat x[3:3];
|
||||
mat y[4:4];
|
||||
z = x + y;
|
||||
When a matrix is created, each element is initially assigned the
|
||||
value zero. Other values may be assigned then or later using the
|
||||
"= {...}" assignment operation. Thus
|
||||
|
||||
fails because the calculator does not have a way of knowing what
|
||||
the bounds should be on the resulting matrix. If the bounds match,
|
||||
then the resulting matrix has the same bounds. If exactly one of
|
||||
the lower bounds is zero, then the resulting matrix will have the
|
||||
nonzero lower bounds. Thus means that the bounds of a matrix are
|
||||
preserved when operated on by matrices with lower bounds of zero.
|
||||
For example:
|
||||
A = {value_0, value_1, ...}
|
||||
|
||||
mat x[3:7];
|
||||
mat y[5];
|
||||
z = x + y;
|
||||
assigns the values value_0, value_1, ... to the elements A[[0]],
|
||||
A[[1]], ... Any blank "value" is passed over. For example,
|
||||
|
||||
will succeed and assign the variable 'z' a matrix whose
|
||||
bounds are 3-7.
|
||||
A = {1, , 2}
|
||||
|
||||
Vectors are matrices of only a single dimension. The 'dp' and 'cp'
|
||||
functions calculate the dot product and cross product of a vector
|
||||
(cross product is only defined for vectors of size 3).
|
||||
will assign the value 1 to A[[0]], 2 to A[[2]] and leave all other
|
||||
elements unchanged. Values may also be assigned to elements by
|
||||
simple assignments, as in A[0,0] = 1, A[0,2] = 2;
|
||||
|
||||
Matrices can be searched for particular values by using the 'search'
|
||||
and 'rsearch' functions. They return the element number of the
|
||||
found value (zero based), or null if the value does not exist in the
|
||||
matrix. Using the element number in double-bracket indexing will
|
||||
then refer to the found element.
|
||||
If the index-range is left blank but an initializer list is specified
|
||||
as in
|
||||
|
||||
mat A[] = {1, 2 }
|
||||
B = mat[] = {1, , 3, }
|
||||
|
||||
the matrix created is one-dimensional. If the list contains a
|
||||
positive number n of values or blanks, the result is as if the
|
||||
range were specified by [n], i.e. the range of indices is from
|
||||
0 to n - 1. In the above examples, A is of size 2 with A[0] = 1
|
||||
and A[1] = 2; B is of size 4 with B[0] = 1, B[1] = B[3] = 0,
|
||||
B[2] = 3. The specification mat[] = { } creates the same as mat[1].
|
||||
|
||||
If the index-range is left blank and no initializer list is specified,
|
||||
as in mat C[] or C = mat[], the matrix assigned to C has zero
|
||||
dimension; this has one element C[]. To assign a value using "= { ...}"
|
||||
at the same time as creating C, parentheses are required as in
|
||||
(mat[]) = {value} or (mat C[]) = {value}. Later a value may be
|
||||
assigned to C[] by C[] = value or C = {value}.
|
||||
|
||||
The value assigned at any time to any element of a matrix can be of
|
||||
any type - number, string, list, matrix, object of previously specified
|
||||
type, etc. For some matrix operations there are of course conditions
|
||||
that elements may have to satisfy: for example, addition of matrices
|
||||
requires that addition of corresponding elements be possible.
|
||||
If an element of a matrix is a structure for which indices or an
|
||||
object element specifier is required, an element of that structure is
|
||||
referred to by appropriate uses of [ ] or ., and so on if an element
|
||||
of that element is required. For example, one may have an expressions
|
||||
like
|
||||
|
||||
A[1,2][3].alpha[2];
|
||||
|
||||
if A[1,2][3].alpha is a list with at least three elements, A[1,2][3] is
|
||||
an object of a type like obj {alpha, beta}, A[1,2] is a matrix of
|
||||
type mat[4] and A is a mat[2,3] matrix. When an element of a matrix
|
||||
is a matrix and the total number of indices does not exceed 4, the
|
||||
indices can be combined into one list, e.g. the A[1,2][3] in the
|
||||
above example can be shortened to A[1,2,3]. (Unlike C, A[1,2] cannot
|
||||
be expressed as A[1][2].)
|
||||
|
||||
The function ismat(V) returns 1 if V is a matrix, 0 otherwise.
|
||||
|
||||
isident(V) returns 1 if V is a square matrix with diagonal elements 1,
|
||||
off-diagonal elements zero, or a zero- or one-dimensional matrix with
|
||||
every element 1; otherwise zero is returned. Thus isident(V) = 1
|
||||
indicates that for V * A and A * V where A is any matrix of
|
||||
for which either product is defined and the elements of A are real
|
||||
or complex numbers, that product will equal A.
|
||||
|
||||
If V is matrix-valued, test(V) returns 0 if every element of V tests
|
||||
as zero; otherwise 1 is returned.
|
||||
|
||||
The dimension of a matrix A, i.e. the number of index-ranges in the
|
||||
initial creation of the matrix, is returned by the function matdim(A).
|
||||
For 1 <= i <= matdim(A), the minimum and maximum values for the i-th
|
||||
index range are returned by matmin(A, i) and matmax(A,i), respectively.
|
||||
The total number of elements in the matrix is returned by size(A).
|
||||
The sum of the elements in the matrix is returned by matsum(A).
|
||||
|
||||
The default method of printing matrices is to give a line of information
|
||||
about the matrix, and to list on separate lines up to 15 elements,
|
||||
the indices and either the value (for numbers, strings, objects) or
|
||||
some descriptive information for lists or matrices, etc.
|
||||
Numbers are displayed in the current number-printing mode.
|
||||
The maximum number of elements to be printed can be assigned
|
||||
any nonnegative integer value m by config("maxprint", m).
|
||||
|
||||
Users may define another method of printing matrices by defining a
|
||||
function mat_print(M); for example, for a not too big 2-dimensional
|
||||
matrix A it is a common practice to use a loop like:
|
||||
|
||||
for (i = matmin(A,1); i <= matmax(A,1); i++) {
|
||||
for (j = matmin(A,2); j <= matmax(A,2); j++)
|
||||
printf("%8d", A[i,j];
|
||||
print;
|
||||
}
|
||||
|
||||
The default printing may be restored by
|
||||
|
||||
undefine mat_print;
|
||||
|
||||
|
||||
The keyword "mat" followed by two or more index-range-lists returns a
|
||||
matrix with indices specified by the first list, whose elements are
|
||||
matrices as determined by the later index-range-lists. For
|
||||
example mat[2][3] is a 2-element matrix, each of whose elements has
|
||||
as its value a 3-element matrix. Values may be assigned to the
|
||||
elements of the innermost matrices by nested = {...} operations as in
|
||||
|
||||
mat [2][3] = {{1,2,3},{4,5,6}}
|
||||
|
||||
An example of the use of mat with a declarator is
|
||||
|
||||
global mat A B [2,3], C [4]
|
||||
|
||||
This creates, if they do not already exist, three global variables with
|
||||
names A, B, C, and assigns to A and B the value mat[2,3] and to C mat[4].
|
||||
|
||||
Some operations are defined for matrices.
|
||||
|
||||
A == B
|
||||
Returns 1 if A and B are of the same "shape" and "corresponding"
|
||||
elements are equal; otherwise 0 is returned. Being of the same
|
||||
shape means they have the same dimension d, and for each i <= d,
|
||||
|
||||
matmax(A,i) - matmin(A,i) == matmax(B,i) - matmin(B,i),
|
||||
|
||||
One consequence of being the same shape is that the matrices will
|
||||
have the same size. Elements "correspond" if they have the same
|
||||
double-bracket indices; thus A == B implies that A[[i]] == B[[i]]
|
||||
for 0 <= i < size(A) == size(B).
|
||||
|
||||
A + B
|
||||
A - B
|
||||
These are defined A and B have the same shape, the element
|
||||
with double-bracket index j being evaluated by A[[j]] + B[[j]] and
|
||||
A[[j]] - B[[j]], respectively. The index-ranges for the results
|
||||
are those for the matrix A.
|
||||
|
||||
A[i,j]
|
||||
If A is two-dimensional, it is customary to speak of the indices
|
||||
i, j in A[i,j] as referring to rows and columns; the number of
|
||||
rows is matmax(A,1) - matmin(A,1) + 1; the number of columns if
|
||||
matmax(A,2) - matmin(A,2) + 1. A matrix is said to be square
|
||||
if it is two-dimensional and the number of rows is equal to the
|
||||
number of columns.
|
||||
|
||||
A * B
|
||||
Multiplication is defined provided certain conditions by the
|
||||
dimensions and shapes of A and B are satisfied. If both have
|
||||
dimension 2 and the column-index-list for A is the same as
|
||||
the row-index-list for B, C = A * B is defined in the usual
|
||||
way so that for i in the row-index-list of A and j in the
|
||||
column-index-list for B,
|
||||
|
||||
C[i,j] = Sum A[i,k] * B[k,j]
|
||||
|
||||
the sum being over k in the column-index-list of A. The same
|
||||
formula is used so long as the number of columns in A is the same
|
||||
as the number of rows in B and k is taken to refer to the offset
|
||||
from matmin(A,2) and matmin(B,1), respectively, for A and B.
|
||||
If the multiplications and additions required cannot be performed,
|
||||
an execution error may occur or the result for C may contain
|
||||
one or more error-values as elements.
|
||||
|
||||
If A or B has dimension zero, the result for A * B is simply
|
||||
that of multiplying the elements of the other matrix on the
|
||||
left by A[] or on the right by B[].
|
||||
|
||||
If both A and B have dimension 1, A * B is defined if A and B
|
||||
have the same size; the result has the same index-list as A
|
||||
and each element is the product of corresponding elements of
|
||||
A and B. If A and B have the same index-list, this multiplication
|
||||
is consistent with multiplication of 2D matrices if A and B are
|
||||
taken to represent 2D matrices for which the off-diagonal elements
|
||||
are zero and the diagonal elements are those of A and B.
|
||||
the real and complex numbers.
|
||||
|
||||
If A is of dimension 1 and B is of dimension 2, A * B is defined
|
||||
if the number of rows in B is the same as the size of A. The
|
||||
result has the same index-lists as B; each row of B is multiplied
|
||||
on the left by the corresponding element of A.
|
||||
|
||||
If A is of dimension 2 and B is of dimension 1, A * B is defined
|
||||
if number of columns in A is the same as the size of A. The
|
||||
result has the same index-lists as A; each column of A is
|
||||
multiplied on the right by the corresponding element of B.
|
||||
|
||||
The algebra of additions and multiplications involving both one-
|
||||
and two-dimensional matrices is particularly simple when all the
|
||||
elements are real or complex numbers and all the index-lists are
|
||||
the same, as occurs, for example, if for some positive integer n,
|
||||
all the matrices start as mat [n] or mat [n,n].
|
||||
|
||||
det(A)
|
||||
If A is a square, det(A) is evaluated by an algorithm that returns
|
||||
the determinant of A if the elements of A are real or complex
|
||||
numbers, and if such an A is non-singular, inverse(A) returns
|
||||
the inverse of A indexed in the same way as A. For matrix A of
|
||||
dimension 0 or 1, det(A) is defined as the product of the elements
|
||||
of A in the order in which they occur in A, inverse(A) returns
|
||||
a matrix indexed in the same way as A with each element inverted.
|
||||
|
||||
|
||||
The following functions are defined to return matrices with the same
|
||||
index-ranges as A and the specified operations performed on all
|
||||
elements of A. Here num is an arbitrary complex number (nonzero
|
||||
when it is a divisor), int an integer, rnd a rounding-type
|
||||
specifier integer, real a real number.
|
||||
|
||||
num * A
|
||||
A * num
|
||||
A / num
|
||||
- A
|
||||
conj(A)
|
||||
A << int, A >> int
|
||||
scale(A, int)
|
||||
round(A, int, rnd)
|
||||
bround(A, int, rnd)
|
||||
appr(A, real, rnd)
|
||||
int(A)
|
||||
frac(A)
|
||||
A // real
|
||||
A % real
|
||||
A ^ int
|
||||
|
||||
If A and B are one-dimensional of the same size dp(A, B) returns
|
||||
their dot-product, i.e. the sum of the products of corresponding
|
||||
elements.
|
||||
|
||||
If A and B are one-dimension and of size 3, cp(A, B) returns their
|
||||
cross-product.
|
||||
|
||||
randperm(A) returns a matrix indexed the same as A in which the elements
|
||||
of A have been randomly permuted.
|
||||
|
||||
sort(A) returns a matrix indexed the same as A in which the elements
|
||||
of A have been sorted.
|
||||
|
||||
If A is an lvalue whose current value is a matrix, matfill(A, v)
|
||||
assigns the value v to every element of A, and if also, A is
|
||||
square, matfill(A, v1, v2) assigns v1 to the off-diagonal elements,
|
||||
v2 to the diagonal elements. To create and assign to A the unit
|
||||
n * n matrix, one may use matfill(mat A[n,n], 0, 1).
|
||||
|
||||
For a square matrix A, mattrace(A) returns the trace of A, i.e. the
|
||||
sum of the diagonal elements. For zero- or one-dimensional A,
|
||||
mattrace(A) returns the sum of the elements of A.
|
||||
|
||||
For a two-dimensional matrix A, mattrans(A) returns the transpose
|
||||
of A, i.e. if A is mat[m,n], it returns a mat[n,m] matrix with
|
||||
[i,j] element equal to A[j,i]. For zero- or one-dimensional A,
|
||||
mattrace(A) returns a matrix with the same value as A.
|
||||
|
||||
The functions search(A, value, start, end]) and
|
||||
rsearch(A, value, start, end]) return the first or last index i
|
||||
for which A[[i]] == value and start <= i < end, or if there is
|
||||
no such index, the null value. For further information on default
|
||||
values and the use of an "accept" function, see the help files for
|
||||
search and rsearch.
|
||||
|
||||
reverse(A) returns a matrix with the same index-lists as A but the
|
||||
elements in reversed order.
|
||||
|
||||
The copy and blkcpy functions may be used to copy data to a matrix from
|
||||
a matrix or list, or from a matrix to a list. In copying from a
|
||||
matrix to a matrix the matrices need not have the same dimension;
|
||||
in effect they are treated as linear arrays.
|
||||
|
||||
EXAMPLE
|
||||
> obj point {x,y}
|
||||
> mat A[5] = {1, 2+3i, "ab", mat[2] = {4,5}. obj point = {6,7}}
|
||||
> A
|
||||
mat [5] (5 elements, 5 nonzero):
|
||||
[0] = 1
|
||||
[1] = 2+3i
|
||||
[2] = "ab"
|
||||
[3] = mat [2] (2 elements, 2 nonzero)
|
||||
[4] = obj point {6, 7}
|
||||
|
||||
> print A[0], A[1], A[2], A[3][0], A[4].x
|
||||
1 2+3i ab 4 6
|
||||
|
||||
> define point_add(a,b) = obj point = {a.x + b.x, a.y + b.y}
|
||||
point_add(a,b) defined
|
||||
|
||||
> mat [B] = {8, , "cd", mat[2] = {9,10}, obj point = {11,12}}
|
||||
> A + B
|
||||
|
||||
mat [5] (5 elements, 5 nonzero):
|
||||
[0] = 9
|
||||
[1] = 2+3i
|
||||
[2] = "abcd"
|
||||
[3] = mat [2] (2 elements, 2 nonzero)
|
||||
[4] = obj point {17, 19}
|
||||
|
||||
> mat C[2,2] = {1,2,3,4}
|
||||
> C^10
|
||||
|
||||
mat [2,2] (4 elements, 4 nonzero):
|
||||
[0,0] = 4783807
|
||||
[0,1] = 6972050
|
||||
[1,0] = 10458075
|
||||
[1,1] = 15241882
|
||||
|
||||
> C^-10
|
||||
|
||||
mat [2,2] (4 elements, 4 nonzero):
|
||||
[0,0] = 14884.650390625
|
||||
[0,1] = -6808.642578125
|
||||
[1,0] = -10212.9638671875
|
||||
[1,1] = 4671.6865234375
|
||||
|
||||
> mat A[4] = {1,2,3,4}, A * reverse(A);
|
||||
|
||||
mat [4] (4 elements, 4 nonzero):
|
||||
[0] = 4
|
||||
[1] = 6
|
||||
[2] = 6
|
||||
[3] = 4
|
||||
|
||||
LIMITS
|
||||
The theoretical upper bound for the absolute values of indices is
|
||||
2^31 - 1, but the size of matrices that can be handled in practice will
|
||||
be limited by the availability of memory and what is an acceptable
|
||||
runtime. For example, although it may take only a fraction of a
|
||||
second to invert a 10 * 10 matrix, it will probably take about 1000
|
||||
times as long to invert a 100 * 100 matrix.
|
||||
|
||||
LIBRARY
|
||||
n/a
|
||||
|
||||
SEE ALSO
|
||||
ismat, matdim, matmax, matmin, mattrans, mattrace, matsum, det, inverse,
|
||||
isident, test, config, search, rsearch, reverse, copy, blkcpy, dp, cp,
|
||||
randperm, sort
|
||||
|
@@ -48,7 +48,6 @@ Very High priority items:
|
||||
history command history
|
||||
interrupt how interrupts are handled
|
||||
list using lists
|
||||
mat using matrices
|
||||
obj user defined data types
|
||||
operator math, relational, logic and variable access ...
|
||||
statement flow control and declaration statements
|
||||
|
@@ -11,7 +11,7 @@ Calc Enhancement Wish List:
|
||||
The following items are in the calc wish list. Programs like this
|
||||
can be extended and improved forever.
|
||||
|
||||
Calc bug repoers, however, should be sent to:
|
||||
Calc bug reports, however, should be sent to:
|
||||
|
||||
calc-bugs at postofc dot corp dot sgi dot com
|
||||
|
||||
|
257
matfunc.c
257
matfunc.c
@@ -44,7 +44,8 @@ matadd(MATRIX *m1, MATRIX *m2)
|
||||
max1 = m1->m_max[dim];
|
||||
min2 = m2->m_min[dim];
|
||||
max2 = m2->m_max[dim];
|
||||
if ((min1 && min2 && (min1 != min2)) || ((max1-min1) != (max2-min2))) {
|
||||
if ((min1 && min2 && (min1 != min2)) ||
|
||||
((max1-min1) != (max2-min2))) {
|
||||
math_error("Incompatible matrix bounds for add");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
@@ -85,7 +86,8 @@ matsub(MATRIX *m1, MATRIX *m2)
|
||||
max1 = m1->m_max[dim];
|
||||
min2 = m2->m_min[dim];
|
||||
max2 = m2->m_max[dim];
|
||||
if ((min1 && min2 && (min1 != min2)) || ((max1-min1) != (max2-min2))) {
|
||||
if ((min1 && min2 && (min1 != min2)) ||
|
||||
((max1-min1) != (max2-min2))) {
|
||||
math_error("Incompatible matrix bounds for sub");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
@@ -131,15 +133,89 @@ matmul(MATRIX *m1, MATRIX *m2)
|
||||
{
|
||||
register MATRIX *res;
|
||||
long i1, i2, max1, max2, index, maxindex;
|
||||
VALUE *v1, *v2;
|
||||
VALUE *v1, *v2, *vres;
|
||||
VALUE sum, tmp1, tmp2;
|
||||
|
||||
if (m1->m_dim == 0) {
|
||||
i2 = m2->m_size;
|
||||
v2 = m2->m_table;
|
||||
res = matalloc(i2);
|
||||
*res = *m2;
|
||||
vres = res->m_table;
|
||||
while (i2-- > 0)
|
||||
mulvalue(m1->m_table, v2++, vres++);
|
||||
return res;
|
||||
}
|
||||
if (m2->m_dim == 0) {
|
||||
i1 = m1->m_size;
|
||||
v1 = m1->m_table;
|
||||
res = matalloc(i1);
|
||||
*res = *m1;
|
||||
vres = res->m_table;
|
||||
while (i1-- > 0)
|
||||
mulvalue(v1++, m2->m_table, vres++);
|
||||
return res;
|
||||
}
|
||||
if (m1->m_dim == 1 && m2->m_dim == 1) {
|
||||
if (m1->m_max[0]-m1->m_min[0] != m2->m_max[0]-m2->m_min[0]) {
|
||||
math_error("Incompatible bounds for 1D * 1D matmul");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
res = matalloc(m1->m_size);
|
||||
*res = *m1;
|
||||
v1 = m1->m_table;
|
||||
v2 = m2->m_table;
|
||||
vres = res->m_table;
|
||||
for (index = m1->m_size; index > 0; index--)
|
||||
mulvalue(v1++, v2++, vres++);
|
||||
return res;
|
||||
}
|
||||
if (m1->m_dim == 1 && m2->m_dim == 2) {
|
||||
if (m1->m_max[0]-m1->m_min[0] != m2->m_max[0]-m2->m_min[0]) {
|
||||
math_error("Incompatible bounds for 1D * 2D matmul");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
res = matalloc(m2->m_size);
|
||||
*res = *m2;
|
||||
i1 = m1->m_max[0] - m1->m_min[0] + 1;
|
||||
max2 = m2->m_max[1] - m2->m_min[1] + 1;
|
||||
v1 = m1->m_table;
|
||||
v2 = m2->m_table;
|
||||
vres = res->m_table;
|
||||
while (i1-- > 0) {
|
||||
i2 = max2;
|
||||
while (i2-- > 0)
|
||||
mulvalue(v1, v2++, vres++);
|
||||
v1++;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
if (m1->m_dim == 2 && m2->m_dim == 1) {
|
||||
if (m1->m_max[1]-m1->m_min[1] != m2->m_max[0]-m2->m_min[0]) {
|
||||
math_error("Incompatible bounds for 2D * 1D matmul");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
res = matalloc(m1->m_size);
|
||||
*res = *m1;
|
||||
i1 = m1->m_max[0] - m1->m_min[0] + 1;
|
||||
max1 = m1->m_max[1] - m1->m_min[1] + 1;
|
||||
v1 = m1->m_table;
|
||||
vres = res->m_table;
|
||||
while (i1-- > 0) {
|
||||
v2 = m2->m_table;
|
||||
i2 = max1;
|
||||
while (i2-- > 0)
|
||||
mulvalue(v1++, v2++, vres++);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((m1->m_dim != 2) || (m2->m_dim != 2)) {
|
||||
math_error("Matrix dimension must be two for mul");
|
||||
math_error("Matrix dimensions not compatible for mul");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
if ((m1->m_max[1]-m1->m_min[1]) != (m2->m_max[0]-m2->m_min[0])) {
|
||||
math_error("Incompatible bounds for matrix mul");
|
||||
math_error("Incompatible bounds for 2D * 2D matrix mul");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
max1 = (m1->m_max[0] - m1->m_min[0] + 1);
|
||||
@@ -164,6 +240,7 @@ matmul(MATRIX *m1, MATRIX *m2)
|
||||
freevalue(&sum);
|
||||
sum = tmp2;
|
||||
v1++;
|
||||
if (index+1 < maxindex)
|
||||
v2 += max2;
|
||||
}
|
||||
index = (i1 * max2) + i2;
|
||||
@@ -185,8 +262,17 @@ matsquare(MATRIX *m)
|
||||
VALUE *v1, *v2;
|
||||
VALUE sum, tmp1, tmp2;
|
||||
|
||||
if (m->m_dim < 2) {
|
||||
res = matalloc(m->m_size);
|
||||
*res = *m;
|
||||
v1 = m->m_table;
|
||||
v2 = res->m_table;
|
||||
for (index = m->m_size; index > 0; index--)
|
||||
squarevalue(v1++, v2++);
|
||||
return res;
|
||||
}
|
||||
if (m->m_dim != 2) {
|
||||
math_error("Matrix dimension must be two for square");
|
||||
math_error("Matrix dimension exceeds two for square");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
||||
@@ -224,7 +310,8 @@ matsquare(MATRIX *m)
|
||||
|
||||
|
||||
/*
|
||||
* Compute the result of raising a square matrix to an integer power.
|
||||
* Compute the result of raising a matrix to an integer power if
|
||||
* dimension <= 2 and for dimension == 2, the matrix is square.
|
||||
* Negative powers mean the positive power of the inverse.
|
||||
* Note: This calculation could someday be improved for large powers
|
||||
* by using the characteristic polynomial of the matrix.
|
||||
@@ -240,12 +327,13 @@ matpowi(MATRIX *m, NUMBER *q)
|
||||
long power; /* power to raise to */
|
||||
FULL bit; /* current bit value */
|
||||
|
||||
if (m->m_dim != 2) {
|
||||
math_error("Matrix dimension must be two for power");
|
||||
if (m->m_dim > 2) {
|
||||
math_error("Matrix dimension greater than 2 for power");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
||||
math_error("Raising non-square matrix to a power");
|
||||
if (m->m_dim == 2 && (m->m_max[0] - m->m_min[0] !=
|
||||
m->m_max[1] - m->m_min[1])) {
|
||||
math_error("Raising non-square 2D matrix to a power");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
if (qisfrac(q)) {
|
||||
@@ -544,6 +632,10 @@ mattrace(MATRIX *m)
|
||||
VALUE tmp;
|
||||
long i, j;
|
||||
|
||||
if (m->m_dim < 2) {
|
||||
matsum(m, &sum);
|
||||
return sum;
|
||||
}
|
||||
if (m->m_dim != 2)
|
||||
return error_value(E_MATTRACE2);
|
||||
i = (m->m_max[0] - m->m_min[0] + 1);
|
||||
@@ -574,6 +666,8 @@ mattrans(MATRIX *m)
|
||||
long row, col; /* current row and column */
|
||||
MATRIX *res;
|
||||
|
||||
if (m->m_dim < 2)
|
||||
return matcopy(m);
|
||||
res = matalloc(m->m_size);
|
||||
res->m_dim = 2;
|
||||
res->m_min[0] = m->m_min[1];
|
||||
@@ -742,13 +836,15 @@ matindex(MATRIX *mp, BOOL create, long dim, VALUE *indices)
|
||||
long offset; /* current offset into array */
|
||||
int i; /* loop counter */
|
||||
|
||||
if (dim <= 0) {
|
||||
math_error("Bad dimension %ld for matrix", dim);
|
||||
if (dim < 0) {
|
||||
math_error("Negative dimension %ld for matrix", dim);
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
for (;;) {
|
||||
if (dim < mp->m_dim) {
|
||||
math_error("Indexing a %ldd matrix as a %ldd matrix", mp->m_dim, dim);
|
||||
math_error(
|
||||
"Indexing a %ldd matrix as a %ldd matrix",
|
||||
mp->m_dim, dim);
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
offset = 0;
|
||||
@@ -763,7 +859,8 @@ matindex(MATRIX *mp, BOOL create, long dim, VALUE *indices)
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
index = qtoi(q);
|
||||
if (zge31b(q->num) || (index < mp->m_min[i]) || (index > mp->m_max[i])) {
|
||||
if (zge31b(q->num) || (index < mp->m_min[i]) ||
|
||||
(index > mp->m_max[i])) {
|
||||
math_error("Index out of bounds for matrix");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
@@ -785,6 +882,36 @@ matindex(MATRIX *mp, BOOL create, long dim, VALUE *indices)
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Returns the list of indices for a matrix element with specified
|
||||
* double-bracket index.
|
||||
*/
|
||||
LIST *
|
||||
matindices(MATRIX *mp, long index)
|
||||
{
|
||||
LIST *lp;
|
||||
int j;
|
||||
long d;
|
||||
VALUE val;
|
||||
|
||||
if (index < 0 || index >= mp->m_size)
|
||||
return NULL;
|
||||
|
||||
lp = listalloc();
|
||||
val.v_type = V_NUM;
|
||||
j = mp->m_dim;
|
||||
|
||||
while (--j >= 0) {
|
||||
d = mp->m_max[j] - mp->m_min[j] + 1;
|
||||
val.v_num = itoq(index % d + mp->m_min[j]);
|
||||
insertlistfirst(lp, &val);
|
||||
qfree(val.v_num);
|
||||
index /= d;
|
||||
}
|
||||
return lp;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Search a matrix for the specified value, starting with the specified index.
|
||||
* Returns 0 and stores index if value found; otherwise returns 1.
|
||||
@@ -898,7 +1025,8 @@ matident(MATRIX *m)
|
||||
MATRIX *res; /* resulting matrix */
|
||||
|
||||
if (m->m_dim != 2) {
|
||||
math_error("Matrix dimension must be two for setting to identity");
|
||||
math_error(
|
||||
"Matrix dimension must be two for setting to identity");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
||||
@@ -912,7 +1040,8 @@ matident(MATRIX *m)
|
||||
for (row = 0; row < rows; row++) {
|
||||
for (col = 0; col < rows; col++) {
|
||||
val->v_type = V_NUM;
|
||||
val->v_num = ((row == col) ? qlink(&_qone_) : qlink(&_qzero_));
|
||||
val->v_num = ((row == col) ? qlink(&_qone_) :
|
||||
qlink(&_qzero_));
|
||||
val++;
|
||||
}
|
||||
}
|
||||
@@ -934,11 +1063,21 @@ matinv(MATRIX *m)
|
||||
long cur; /* current row being worked on */
|
||||
long row, col; /* temp row and column values */
|
||||
VALUE *val; /* current value in matrix*/
|
||||
VALUE *vres; /* current value in result for dim < 2 */
|
||||
VALUE mulval; /* value to multiply rows by */
|
||||
VALUE tmpval; /* temporary value */
|
||||
|
||||
if (m->m_dim < 2) {
|
||||
res = matalloc(m->m_size);
|
||||
*res = *m;
|
||||
val = m->m_table;
|
||||
vres = res->m_table;
|
||||
for (cur = m->m_size; cur > 0; cur--)
|
||||
invertvalue(val++, vres++);
|
||||
return res;
|
||||
}
|
||||
if (m->m_dim != 2) {
|
||||
math_error("Matrix dimension must be two for inverse");
|
||||
math_error("Matrix dimension exceeds two for inverse");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
||||
@@ -994,26 +1133,30 @@ matinv(MATRIX *m)
|
||||
matswaprow(res, row, cur);
|
||||
}
|
||||
/*
|
||||
* Now for every other nonzero entry in the current column, subtract
|
||||
* the appropriate multiple of the current row to force that entry
|
||||
* to become zero.
|
||||
* Now for every other nonzero entry in the current column,
|
||||
* subtract the appropriate multiple of the current row to
|
||||
* force that entry to become zero.
|
||||
*/
|
||||
val = &m->m_table[cur];
|
||||
/* ignore Saber-C warning #26 - storing bad pointer in val */
|
||||
/* ok to ignore on name matinv`val */
|
||||
for (row = 0; row < rows; row++, val += rows) {
|
||||
if ((row == cur) || (testvalue(val) == 0))
|
||||
for (row = 0; row < rows; row++) {
|
||||
if ((row == cur) || (testvalue(val) == 0)) {
|
||||
if (row+1 < rows)
|
||||
val += rows;
|
||||
continue;
|
||||
}
|
||||
mulvalue(val, &mulval, &tmpval);
|
||||
matsubrow(m, row, cur, &tmpval);
|
||||
matsubrow(res, row, cur, &tmpval);
|
||||
freevalue(&tmpval);
|
||||
if (row+1 < rows)
|
||||
val += rows;
|
||||
}
|
||||
freevalue(&mulval);
|
||||
}
|
||||
/*
|
||||
* Now the original matrix has nonzero entries only on its main diagonal.
|
||||
* Scale the rows of the result matrix by the inverse of those entries.
|
||||
* Now the original matrix has nonzero entries only on its main
|
||||
* diagonal. Scale the rows of the result matrix by the inverse
|
||||
* of those entries.
|
||||
*/
|
||||
val = m->m_table;
|
||||
for (row = 0; row < rows; row++) {
|
||||
@@ -1022,6 +1165,7 @@ matinv(MATRIX *m)
|
||||
matmulrow(res, row, &mulval);
|
||||
freevalue(&mulval);
|
||||
}
|
||||
if (row+1 < rows)
|
||||
val += (rows + 1);
|
||||
}
|
||||
matfree(m);
|
||||
@@ -1044,6 +1188,24 @@ matdet(MATRIX *m)
|
||||
VALUE tmp1, tmp2, tmp3;
|
||||
BOOL neg; /* whether to negate determinant */
|
||||
|
||||
if (m->m_dim < 2) {
|
||||
vp = m->m_table;
|
||||
i = m->m_size;
|
||||
copyvalue(vp, &tmp1);
|
||||
|
||||
while (--i > 0) {
|
||||
mulvalue(&tmp1, ++vp, &tmp2);
|
||||
freevalue(&tmp1);
|
||||
tmp1 = tmp2;
|
||||
}
|
||||
return tmp1;
|
||||
}
|
||||
|
||||
if (m->m_dim != 2)
|
||||
return error_value(E_DET2);
|
||||
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1]))
|
||||
return error_value(E_DET3);
|
||||
|
||||
/*
|
||||
* Loop over each row, and eliminate all lower entries in the
|
||||
* corresponding column by using row operations. Copy the original
|
||||
@@ -1113,6 +1275,7 @@ matdet(MATRIX *m)
|
||||
}
|
||||
}
|
||||
div = pivot;
|
||||
if (k > 0)
|
||||
pivot += n + 1;
|
||||
}
|
||||
if (neg)
|
||||
@@ -1298,7 +1461,8 @@ matalloc(long size)
|
||||
|
||||
m = (MATRIX *) malloc(matsize(size));
|
||||
if (m == NULL) {
|
||||
math_error("Cannot get memory to allocate matrix of size %d", size);
|
||||
math_error("Cannot get memory to allocate matrix of size %d",
|
||||
size);
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
m->m_size = size;
|
||||
@@ -1384,7 +1548,8 @@ matcmp(MATRIX *m1, MATRIX *m2)
|
||||
if ((m1->m_dim != m2->m_dim) || (m1->m_size != m2->m_size))
|
||||
return TRUE;
|
||||
for (i = 0; i < m1->m_dim; i++) {
|
||||
if ((m1->m_max[i] - m1->m_min[i]) != (m2->m_max[i] - m2->m_min[i]))
|
||||
if ((m1->m_max[i] - m1->m_min[i]) !=
|
||||
(m2->m_max[i] - m2->m_min[i]))
|
||||
return TRUE;
|
||||
}
|
||||
v1 = m1->m_table;
|
||||
@@ -1509,10 +1674,20 @@ matisident(MATRIX *m)
|
||||
register VALUE *val; /* current value */
|
||||
long row, col; /* row and column numbers */
|
||||
|
||||
val = m->m_table;
|
||||
if (m->m_dim == 0) {
|
||||
return (val->v_type == V_NUM && qisone(val->v_num));
|
||||
}
|
||||
if (m->m_dim == 1) {
|
||||
for (row = m->m_min[0]; row <= m->m_max[0]; row++, val++) {
|
||||
if (val->v_type != V_NUM || !qisone(val->v_num))
|
||||
return FALSE;
|
||||
}
|
||||
return TRUE;
|
||||
}
|
||||
if ((m->m_dim != 2) ||
|
||||
((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])))
|
||||
return FALSE;
|
||||
val = m->m_table;
|
||||
for (row = m->m_min[0]; row <= m->m_max[0]; row++) {
|
||||
/*
|
||||
* We could use col = m->m_min[1]; col < m->m_max[1]
|
||||
@@ -1558,15 +1733,22 @@ matprint(MATRIX *m, long max_print)
|
||||
fullsize *= (m->m_max[i] - m->m_min[i] + 1);
|
||||
}
|
||||
msg = ((max_print > 0) ? "\nmat [" : "mat [");
|
||||
if (dim) {
|
||||
for (i = 0; i < dim; i++) {
|
||||
if (m->m_min[i])
|
||||
math_fmt("%s%ld:%ld", msg, m->m_min[i], m->m_max[i]);
|
||||
else
|
||||
if (m->m_min[i]) {
|
||||
math_fmt("%s%ld:%ld", msg,
|
||||
m->m_min[i], m->m_max[i]);
|
||||
} else {
|
||||
math_fmt("%s%ld", msg, m->m_max[i] + 1);
|
||||
}
|
||||
msg = ",";
|
||||
}
|
||||
if (max_print > fullsize)
|
||||
} else {
|
||||
math_str("mat [");
|
||||
}
|
||||
if (max_print > fullsize) {
|
||||
max_print = fullsize;
|
||||
}
|
||||
vp = m->m_table;
|
||||
count = 0;
|
||||
for (index = 0; index < fullsize; index++) {
|
||||
@@ -1588,11 +1770,16 @@ matprint(MATRIX *m, long max_print)
|
||||
for (index = 0; index < max_print; index++) {
|
||||
msg = " [";
|
||||
j = index;
|
||||
if (dim) {
|
||||
for (i = 0; i < dim; i++) {
|
||||
math_fmt("%s%ld", msg, m->m_min[i] + (j / sizes[i]));
|
||||
math_fmt("%s%ld", msg,
|
||||
m->m_min[i] + (j / sizes[i]));
|
||||
j %= sizes[i];
|
||||
msg = ",";
|
||||
}
|
||||
} else {
|
||||
math_str(msg);
|
||||
}
|
||||
math_str("] = ");
|
||||
printvalue(vp++, PRINT_SHORT | PRINT_UNAMBIG);
|
||||
math_str("\n");
|
||||
|
@@ -320,7 +320,7 @@ o_matcreate(FUNC *fp, long dim)
|
||||
long tmp; /* temporary */
|
||||
long size; /* size of matrix */
|
||||
|
||||
if ((dim <= 0) || (dim > MAXDIM)) {
|
||||
if ((dim < 0) || (dim > MAXDIM)) {
|
||||
math_error("Bad dimension %ld for matrix", dim);
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
@@ -489,8 +489,8 @@ o_indexaddr(FUNC *fp, long dim, long writeflag)
|
||||
BLOCK *blk;
|
||||
|
||||
flag = (writeflag != 0);
|
||||
if (dim <= 0) {
|
||||
math_error("Zero or negative dimensions for indexing");
|
||||
if (dim < 0) {
|
||||
math_error("Negative dimension for indexing");
|
||||
/*NOTREACHED*/
|
||||
}
|
||||
val = &stack[-dim];
|
||||
|
6
qmod.c
6
qmod.c
@@ -327,7 +327,7 @@ qfindredc(NUMBER *q)
|
||||
/*
|
||||
* First try for an exact pointer match in the table.
|
||||
*/
|
||||
for (rcp = redc_cache; rcp < &redc_cache[MAXREDC]; rcp++) {
|
||||
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
|
||||
if (q == rcp->rnum) {
|
||||
rcp->age = ++redc_age;
|
||||
return rcp->redc;
|
||||
@@ -337,7 +337,7 @@ qfindredc(NUMBER *q)
|
||||
/*
|
||||
* Search the table again looking for a value which matches.
|
||||
*/
|
||||
for (rcp = redc_cache; rcp < &redc_cache[MAXREDC]; rcp++) {
|
||||
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
|
||||
if (rcp->age && (qcmp(q, rcp->rnum) == 0)) {
|
||||
rcp->age = ++redc_age;
|
||||
return rcp->redc;
|
||||
@@ -355,7 +355,7 @@ qfindredc(NUMBER *q)
|
||||
}
|
||||
|
||||
bestrcp = NULL;
|
||||
for (rcp = redc_cache; rcp < &redc_cache[MAXREDC]; rcp++) {
|
||||
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
|
||||
if ((bestrcp == NULL) || (rcp->age < bestrcp->age))
|
||||
bestrcp = rcp;
|
||||
}
|
||||
|
@@ -271,13 +271,15 @@ mathash(MATRIX *m, QCKHASH val)
|
||||
* hash 10 more elements if they exist
|
||||
*/
|
||||
i = 16;
|
||||
vp = &m->m_table[16];
|
||||
if (i < m->m_size) {
|
||||
vp = (VALUE *)&m->m_table[i];
|
||||
skip = (m->m_size / 11) + 1;
|
||||
while (i < m->m_size) {
|
||||
val = hashvalue(vp, val);
|
||||
i += skip;
|
||||
vp += skip;
|
||||
}
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
|
14
string.c
14
string.c
@@ -584,8 +584,20 @@ stringsegment(STRING *s1, long n1, long n2)
|
||||
s->s_str = c;
|
||||
c1 = s1->s_str + n1;
|
||||
if (n1 >= n2) {
|
||||
while (len-- > 0)
|
||||
/*
|
||||
* We prevent the c1 pointer from walking behind s1_s_str
|
||||
* by stopping one short of the end and running the loop one
|
||||
* more time.
|
||||
*
|
||||
* We could stop the loop with just len-- > 0, but stopping
|
||||
* short and running the loop one last time manually helps make
|
||||
* code checkers such as insure happy.
|
||||
*/
|
||||
while (len-- > 1) {
|
||||
*c++ = *c1--;
|
||||
}
|
||||
/* run the loop manually one last time */
|
||||
*c++ = *c1;
|
||||
} else {
|
||||
while (len-- > 0)
|
||||
*c++ = *c1++;
|
||||
|
@@ -18,7 +18,7 @@ static char *program;
|
||||
#define MAJOR_VER 2 /* major version */
|
||||
#define MINOR_VER 11 /* minor version */
|
||||
#define MAJOR_PATCH 0 /* patch level or 0 if no patch */
|
||||
#define MINOR_PATCH "10.2" /* test number or empty string if no patch */
|
||||
#define MINOR_PATCH "10.3" /* test number or empty string if no patch */
|
||||
|
||||
/*
|
||||
* calc version constants
|
||||
|
6
zio.c
6
zio.c
@@ -394,7 +394,7 @@ zprintb(ZVALUE z, long width)
|
||||
didprint = 0;
|
||||
PUTSTR("0b");
|
||||
while (len-- >= 0) {
|
||||
val = *hp--;
|
||||
val = ((len >= 0) ? *hp-- : *hp);
|
||||
mask = ((HALF)1 << (BASEB - 1));
|
||||
while (mask) {
|
||||
ch = '0' + ((mask & val) != 0);
|
||||
@@ -481,6 +481,7 @@ zprinto(ZVALUE z, long width)
|
||||
break;
|
||||
}
|
||||
len -= rem;
|
||||
if (len > 0) {
|
||||
hp -= rem;
|
||||
while (len > 0) { /* finish in groups of 3 words */
|
||||
PRINTF4("%08lo%08lo%08lo%08lo",
|
||||
@@ -491,6 +492,7 @@ zprinto(ZVALUE z, long width)
|
||||
hp -= 3;
|
||||
len -= 3;
|
||||
}
|
||||
}
|
||||
#else
|
||||
switch (rem) { /* handle odd amounts first */
|
||||
case 0:
|
||||
@@ -513,6 +515,7 @@ zprinto(ZVALUE z, long width)
|
||||
PRINTF1("0%lo", num2);
|
||||
}
|
||||
len -= rem;
|
||||
if (len > 0) {
|
||||
hp -= rem;
|
||||
while (len > 0) { /* finish in groups of 3 halfwords */
|
||||
PRINTF2("%08lo%08lo",
|
||||
@@ -521,6 +524,7 @@ zprinto(ZVALUE z, long width)
|
||||
hp -= 3;
|
||||
len -= 3;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
86
zmath.c
86
zmath.c
@@ -1618,15 +1618,14 @@ ztest(ZVALUE z)
|
||||
|
||||
|
||||
/*
|
||||
* Compare two numbers to see which is larger.
|
||||
* Returns -1 if first number is smaller, 0 if they are equal, and 1 if
|
||||
* first number is larger. This is the same result as ztest(z2-z1).
|
||||
* Return the sign of z1 - z2, i.e. 1 if the first integer is greater,
|
||||
* 0 if they are equal, -1 otherwise.
|
||||
*/
|
||||
FLAG
|
||||
zrel(ZVALUE z1, ZVALUE z2)
|
||||
{
|
||||
register HALF *h1, *h2;
|
||||
register FULL len1, len2;
|
||||
HALF *h1, *h2;
|
||||
LEN len;
|
||||
int sign;
|
||||
|
||||
sign = 1;
|
||||
@@ -1636,66 +1635,47 @@ zrel(ZVALUE z1, ZVALUE z2)
|
||||
return -1;
|
||||
if (z2.sign)
|
||||
sign = -1;
|
||||
len1 = z1.len;
|
||||
len2 = z2.len;
|
||||
h1 = z1.v + z1.len - 1;
|
||||
h2 = z2.v + z2.len - 1;
|
||||
while (len1 > len2) {
|
||||
if (*h1--)
|
||||
return sign;
|
||||
len1--;
|
||||
}
|
||||
while (len2 > len1) {
|
||||
if (*h2--)
|
||||
return -sign;
|
||||
len2--;
|
||||
}
|
||||
while (len1--) {
|
||||
if (*h1-- != *h2--)
|
||||
if (z1.len != z2.len)
|
||||
return (z1.len > z2.len) ? sign : -sign;
|
||||
len = z1.len;
|
||||
h1 = z1.v + len;
|
||||
h2 = z2.v + len;
|
||||
|
||||
while (len > 0) {
|
||||
if (*--h1 != *--h2)
|
||||
break;
|
||||
len--;
|
||||
}
|
||||
if ((len1 = *++h1) > (len2 = *++h2))
|
||||
return sign;
|
||||
if (len1 < len2)
|
||||
return -sign;
|
||||
if (len > 0)
|
||||
return (*h1 > *h2) ? sign : -sign;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compare the absolute value two numbers to see which is larger.
|
||||
* Returns -1 if first number is smaller, 0 if they are equal, and 1 if
|
||||
* first number is larger. This is the same result as ztest(abs(z2)-abs(z1))
|
||||
* or zrel(abs(z1), abs(z2)).
|
||||
* Return the sign of abs(z1) - abs(z2), i.e. 1 if the first integer
|
||||
* has greater absolute value, 0 is they have equal absolute value,
|
||||
* -1 otherwise.
|
||||
*/
|
||||
FLAG
|
||||
zabsrel(ZVALUE z1, ZVALUE z2)
|
||||
{
|
||||
register HALF *h1, *h2;
|
||||
register FULL len1, len2;
|
||||
HALF *h1, *h2;
|
||||
LEN len;
|
||||
|
||||
len1 = z1.len;
|
||||
len2 = z2.len;
|
||||
h1 = z1.v + z1.len - 1;
|
||||
h2 = z2.v + z2.len - 1;
|
||||
while (len1 > len2) {
|
||||
if (*h1--)
|
||||
return 1;
|
||||
len1--;
|
||||
}
|
||||
while (len2 > len1) {
|
||||
if (*h2--)
|
||||
return -1;
|
||||
len2--;
|
||||
}
|
||||
while (len1--) {
|
||||
if (*h1-- != *h2--)
|
||||
if (z1.len != z2.len)
|
||||
return (z1.len > z2.len) ? 1 : -1;
|
||||
|
||||
len = z1.len;
|
||||
h1 = z1.v + len;
|
||||
h2 = z2.v + len;
|
||||
while (len > 0) {
|
||||
if (*--h1 != *--h2)
|
||||
break;
|
||||
len--;
|
||||
}
|
||||
if ((len1 = *++h1) > (len2 = *++h2))
|
||||
return 1;
|
||||
if (len1 < len2)
|
||||
return -1;
|
||||
if (len > 0)
|
||||
return (*h1 > *h2) ? 1 : -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1715,8 +1695,8 @@ zcmp(ZVALUE z1, ZVALUE z2)
|
||||
len = z1.len;
|
||||
h1 = z1.v;
|
||||
h2 = z2.v;
|
||||
while (len-- > 0) {
|
||||
if (*h1++ != *h2++)
|
||||
while (--len > 0) {
|
||||
if (*++h1 != *++h2)
|
||||
return TRUE;
|
||||
}
|
||||
return FALSE;
|
||||
|
40
zmod.c
40
zmod.c
@@ -543,7 +543,7 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
}
|
||||
|
||||
/* zzz */
|
||||
for (pp = &lowpowers[2]; pp < &lowpowers[POWNUMS]; pp++) {
|
||||
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
|
||||
pp->len = 0;
|
||||
pp->v = NULL;
|
||||
}
|
||||
@@ -558,16 +558,17 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
curshift -= POWBITS;
|
||||
|
||||
/*
|
||||
* Calculate the result by examining the power POWBITS bits at a time,
|
||||
* and use the table of low powers at each iteration.
|
||||
* Calculate the result by examining the power POWBITS bits at
|
||||
* a time, and use the table of low powers at each iteration.
|
||||
*/
|
||||
for (;;) {
|
||||
curpow = (curhalf >> curshift) & (POWNUMS - 1);
|
||||
pp = &lowpowers[curpow];
|
||||
|
||||
/*
|
||||
* If the small power is not yet saved in the table, then
|
||||
* calculate it and remember it in the table for future use.
|
||||
* If the small power is not yet saved in the table,
|
||||
* then calculate it and remember it in the table for
|
||||
* future use.
|
||||
*/
|
||||
if (pp->v == NULL) {
|
||||
if (curpow & 0x1)
|
||||
@@ -575,10 +576,13 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
else
|
||||
modpow = _one_;
|
||||
|
||||
for (curbit = 0x2; curbit <= curpow; curbit *= 2) {
|
||||
for (curbit = 0x2;
|
||||
curbit <= curpow;
|
||||
curbit *= 2) {
|
||||
pp = &lowpowers[curbit];
|
||||
if (pp->v == NULL) {
|
||||
zsquare(lowpowers[curbit/2], &temp);
|
||||
zsquare(lowpowers[curbit/2],
|
||||
&temp);
|
||||
zmod5(&temp);
|
||||
zcopy(temp, pp);
|
||||
zfree(temp);
|
||||
@@ -599,8 +603,8 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
}
|
||||
|
||||
/*
|
||||
* If the power is nonzero, then accumulate the small power
|
||||
* into the result.
|
||||
* If the power is nonzero, then accumulate the small
|
||||
* power into the result.
|
||||
*/
|
||||
if (curpow) {
|
||||
zmul(ans, *pp, &temp);
|
||||
@@ -611,20 +615,20 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
}
|
||||
|
||||
/*
|
||||
* Select the next POWBITS bits of the power, if there is
|
||||
* any more to generate.
|
||||
* Select the next POWBITS bits of the power, if
|
||||
* there is any more to generate.
|
||||
*/
|
||||
curshift -= POWBITS;
|
||||
if (curshift < 0) {
|
||||
if (hp-- == z2.v)
|
||||
if (hp == z2.v)
|
||||
break;
|
||||
curhalf = *hp;
|
||||
curhalf = *--hp;
|
||||
curshift = BASEB - POWBITS;
|
||||
}
|
||||
|
||||
/*
|
||||
* Square the result POWBITS times to make room for the next
|
||||
* chunk of bits.
|
||||
* Square the result POWBITS times to make room for
|
||||
* the next chunk of bits.
|
||||
*/
|
||||
for (i = 0; i < POWBITS; i++) {
|
||||
zsquare(ans, &temp);
|
||||
@@ -635,7 +639,7 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
}
|
||||
}
|
||||
|
||||
for (pp = &lowpowers[2]; pp < &lowpowers[POWNUMS]; pp++) {
|
||||
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
|
||||
if (pp->v != NULL)
|
||||
freeh(pp->v);
|
||||
}
|
||||
@@ -669,7 +673,7 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
* Modulus or power is small enough to perform the power raising
|
||||
* directly. Initialize the table of powers.
|
||||
*/
|
||||
for (pp = &lowpowers[2]; pp < &lowpowers[POWNUMS]; pp++) {
|
||||
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
|
||||
pp->len = 0;
|
||||
pp->v = NULL;
|
||||
}
|
||||
@@ -757,7 +761,7 @@ zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res)
|
||||
}
|
||||
}
|
||||
|
||||
for (pp = &lowpowers[2]; pp < &lowpowers[POWNUMS]; pp++) {
|
||||
for (pp = &lowpowers[2]; pp <= &lowpowers[POWNUMS-1]; pp++) {
|
||||
if (pp->v != NULL)
|
||||
freeh(pp->v);
|
||||
}
|
||||
|
Reference in New Issue
Block a user