mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Improved lucas.cal vt tables and arg checking
This commit is contained in:
12
CHANGES
12
CHANGES
@@ -1,4 +1,13 @@
|
||||
The following are the changes from calc version 2.12.6.0 to date:
|
||||
The following are the changes from calc version 2.12.6.1 to date:
|
||||
|
||||
Improved gen_v1(h,n) in lucas.cal to use an even faster search method.
|
||||
|
||||
Improved are checking in lucas.cal. In particular both h and n must be
|
||||
integers >= 1. In the case of both rodseth_xhn(x, h, n) and gen_v1(h, n)
|
||||
h must be odd.
|
||||
|
||||
|
||||
The following are the changes from calc version 2.12.6.0 to 2.12.6.0:
|
||||
|
||||
Added the makefile variable ${COMMON_ADD} that will add flags
|
||||
to all compile and link commands. The ${COMMON_ADD} flags are
|
||||
@@ -68,7 +77,6 @@ The following are the changes from calc version 2.12.6.0 to date:
|
||||
|
||||
Fixed a number of typos in the CHANGES file.
|
||||
|
||||
|
||||
The following are the changes from calc version 2.12.5.4 to 2.12.5.6:
|
||||
|
||||
Recompile to match current RHEL7.2 libc and friends.
|
||||
|
@@ -990,7 +990,7 @@ EXT=
|
||||
|
||||
# The default calc versions
|
||||
#
|
||||
VERSION= 2.12.6.0
|
||||
VERSION= 2.12.6.1
|
||||
|
||||
# Names of shared libraries with versions
|
||||
#
|
||||
|
137
cal/lucas.cal
137
cal/lucas.cal
@@ -243,8 +243,8 @@ pprod256 = 0; /* product of "primes up to 256" / "primes up to 46" */
|
||||
* do make this so.
|
||||
*
|
||||
* input:
|
||||
* h the h as in h*2^n-1
|
||||
* n the n as in h*2^n-1
|
||||
* h h as in h*2^n-1 (must be >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* returns:
|
||||
* 1 => h*2^n-1 is prime
|
||||
@@ -267,13 +267,17 @@ lucas(h, n)
|
||||
* check arg types
|
||||
*/
|
||||
if (!isint(h)) {
|
||||
ldebug("lucas", "h is non-int");
|
||||
quit "FATAL: bad args: h must be an integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "FATAL: bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
ldebug("lucas", "n is non-int");
|
||||
quit "FATAL: bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "FATAL: bad args: n must be an integer >= 1";
|
||||
}
|
||||
|
||||
/*
|
||||
* reduce h if even
|
||||
@@ -484,9 +488,9 @@ lucas(h, n)
|
||||
* See the function gen_v1() for details on the value of v(1).
|
||||
*
|
||||
* input:
|
||||
* h - h as in h*2^n-1
|
||||
* n - n as in h*2^n-1
|
||||
* v1 - gen_v1(h,n) (see function below)
|
||||
* h - h as in h*2^n-1 (must be >= 1)
|
||||
* n - n as in h*2^n-1 (must be >= 1)
|
||||
* v1 - gen_v1(h,n) (must be >= 3) (see function below)
|
||||
*
|
||||
* returns:
|
||||
* u(2) - initial value for Lucas test on h*2^n-1
|
||||
@@ -499,6 +503,8 @@ gen_u2(h, n, v1)
|
||||
local r; /* low value: v(n) */
|
||||
local s; /* high value: v(n+1) */
|
||||
local hbits; /* highest bit set in h */
|
||||
local oldh; /* pre-reduced h */
|
||||
local oldn; /* pre-reduced n */
|
||||
local i;
|
||||
|
||||
/*
|
||||
@@ -507,24 +513,45 @@ gen_u2(h, n, v1)
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (h < 0) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
if (!isint(v1)) {
|
||||
quit "bad args: v1 must be an integer";
|
||||
}
|
||||
if (v1 <= 0) {
|
||||
quit "bogus arg: v1 is <= 0";
|
||||
if (v1 < 3) {
|
||||
quit "bogus arg: v1 must be an integer >= 3";
|
||||
}
|
||||
|
||||
/*
|
||||
* reduce h if even
|
||||
*
|
||||
* we will force h to be odd by moving powers of two over to 2^n
|
||||
*/
|
||||
oldh = h;
|
||||
oldn = n;
|
||||
shiftdown = fcnt(h,2); /* h % 2^shiftdown == 0, max shiftdown */
|
||||
if (shiftdown > 0) {
|
||||
h >>= shiftdown;
|
||||
n += shiftdown;
|
||||
}
|
||||
|
||||
/*
|
||||
* enforce the h > 0 and n >= 2 rules
|
||||
*/
|
||||
if (h <= 0 || n < 1) {
|
||||
print " ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
|
||||
quit "reduced args violate the rule: 0 < h < 2^n";
|
||||
}
|
||||
hbits = highbit(h);
|
||||
if (hbits >= n) {
|
||||
print " ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
|
||||
quit "reduced args violate the rule: 0 < h < 2^n";
|
||||
}
|
||||
|
||||
@@ -599,8 +626,8 @@ gen_u2(h, n, v1)
|
||||
* See the function gen_u2() for details.
|
||||
*
|
||||
* input:
|
||||
* h - h as in h*2^n-1
|
||||
* n - n as in h*2^n-1
|
||||
* h - h as in h*2^n-1 (must be >= 1)
|
||||
* n - n as in h*2^n-1 (must be >= 1)
|
||||
* v1 - gen_v1(h,n) (see function below)
|
||||
*
|
||||
* returns:
|
||||
@@ -638,9 +665,9 @@ gen_u0(h, n, v1)
|
||||
* x > 2
|
||||
*
|
||||
* input:
|
||||
* x - potential v(1) value
|
||||
* h - h as in h*2^n-1
|
||||
* n - n as in h*2^n-1
|
||||
* x potential v(1) value
|
||||
* h h as in h*2^n-1 (h must be odd >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* returns:
|
||||
* 1 if v(1) == x for h*2^n-1
|
||||
@@ -657,9 +684,18 @@ rodseth_xhn(x, h, n)
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (iseven(h)) {
|
||||
quit "bad args: h must be an odd integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
if (!isint(x)) {
|
||||
quit "bad args: x must be an integer";
|
||||
}
|
||||
@@ -764,22 +800,31 @@ rodseth_xhn(x, h, n)
|
||||
* 1 155
|
||||
*
|
||||
* The above distribution was found to hold fairly well over many values of
|
||||
* odd h that are a multiple of 3 and for many values of n where h < 2^n.
|
||||
* odd h that are also a multiple of 3 and for many values of n where h < 2^n.
|
||||
*
|
||||
* When h * 2^n-1 is prime and h is multiple of 3, a smallest v(1) that is
|
||||
* even is extremely rate. Of the list of 127287 known primes of the form
|
||||
* h*2^n-1 when h was a multiple of 3, none has an smallest v(1) that was even.
|
||||
*
|
||||
* About 1 out of 45000 cases when h is a multiple of 3 use v(1) > 99 as the
|
||||
* smallest value of v(1).
|
||||
*
|
||||
* Given this information, when odd h is a multiple of 3 we try, in order,
|
||||
* these values of X:
|
||||
*
|
||||
* 3, 5, 9, 11, 15, 17, 21, 29, 20, 27, 35, 36, 39, 41, 45, 32, 51, 44,
|
||||
* 56, 49, 59, 57, 65, 55, 69, 71, 77, 81, 66, 95, 80, 67, 84, 99, 72,
|
||||
* 74, 87, 90, 104, 101, 105, 109, 116, 111, 92
|
||||
* 3, 5, 9, 11, 15, 17, 21, 29, 27, 35, 39, 41, 45, 51, 49, 59, 57,
|
||||
* 65, 55, 69, 71, 77, 81, 95, 67, 99, 87
|
||||
*
|
||||
* And stop on the first value of X where:
|
||||
*
|
||||
* jacobi(X-2, h*2^n-1) == 1
|
||||
* jacobi(X+2, h*2^n-1) == -1
|
||||
*
|
||||
* If no value in that list works, we start simple search starting with X = 120
|
||||
* and incrementing by 1 until a value of X is found.
|
||||
* About 1 out of 45000 cases when h is a multiple of 3 use V(1) > 99 as
|
||||
* the smallest value of v(1).
|
||||
*
|
||||
* If no value in that list works, we start simple search starting with X = 101
|
||||
* and incrementing by 2 until a value of X is found.
|
||||
*
|
||||
* The x_tbl[] matrix contains those common values of X to try in order.
|
||||
* If all x_tbl_len fail to satisfy Ref4 condition 1, then we begin a
|
||||
@@ -794,14 +839,13 @@ rodseth_xhn(x, h, n)
|
||||
* v(1) for a given n when h is a multiple of 3. Skipping
|
||||
* rarely used v(1) will not doom gen_v1() to a long search.
|
||||
*/
|
||||
x_tbl_len = 45;
|
||||
x_tbl_len = 27;
|
||||
mat x_tbl[x_tbl_len];
|
||||
x_tbl = {
|
||||
3, 5, 9, 11, 15, 17, 21, 29, 20, 27, 35, 36, 39, 41, 45, 32, 51, 44,
|
||||
56, 49, 59, 57, 65, 55, 69, 71, 77, 81, 66, 95, 80, 67, 84, 99, 72,
|
||||
74, 87, 90, 104, 101, 105, 109, 116, 111, 92
|
||||
3, 5, 9, 11, 15, 17, 21, 29, 27, 35, 39, 41, 45, 51, 49, 59, 57, 65,
|
||||
55, 69, 71, 77, 81, 95, 67, 99, 87
|
||||
};
|
||||
next_x = 120;
|
||||
next_x = 101;
|
||||
|
||||
/*
|
||||
* gen_v1 - compute the v(1) for a given h*2^n-1 if we can
|
||||
@@ -956,8 +1000,8 @@ next_x = 120;
|
||||
***
|
||||
*
|
||||
* input:
|
||||
* h h as in h*2^n-1
|
||||
* n n as in h*2^n-1
|
||||
* h h as in h*2^n-1 (h must be odd >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* output:
|
||||
* returns v(1), or -1 is there is no quick way
|
||||
@@ -974,9 +1018,18 @@ gen_v1(h, n)
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (iseven(h)) {
|
||||
quit "bad args: h must be an odd integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
|
||||
/*
|
||||
* check for Case 1: (h mod 3 != 0)
|
||||
@@ -1015,17 +1068,13 @@ gen_v1(h, n)
|
||||
}
|
||||
|
||||
/*
|
||||
* We are in that rare case (about 1 in 2 300 000) where none of the
|
||||
* We are in that rare case (about 1 in 45 000) where none of the
|
||||
* common X values satisfy Ref4 condition 1. We start a linear search
|
||||
* at next_x from here on.
|
||||
*
|
||||
* However, we also need to keep in mind that when x+2 >= 257, we
|
||||
* need to verify that gcd(x-2, h*2^n-1) == 1 and
|
||||
* and to verify that gcd(x+2, h*2^n-1) == 1.
|
||||
* of odd vules at next_x from here on.
|
||||
*/
|
||||
x = next_x;
|
||||
while (rodseth_xhn(x, h, n) != 1) {
|
||||
++x;
|
||||
x += 2;
|
||||
}
|
||||
/* finally found a v(1) value */
|
||||
ldebug("gen_v1", "h= " + str(h) + " n= " + str(n) +
|
||||
@@ -1457,8 +1506,8 @@ legacy_d_qval[7] = 19; legacy_v1_qval[7] = 74; /* a=38 b=1 r=2 */
|
||||
***
|
||||
*
|
||||
* input:
|
||||
* h h as in h*2^n-1
|
||||
* n n as in h*2^n-1
|
||||
* h h as in h*2^n-1 (must be >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* output:
|
||||
* returns v(1), or -1 is there is no quick way
|
||||
@@ -1470,6 +1519,22 @@ legacy_gen_v1(h, n)
|
||||
local val_mod; /* h*2^n-1 mod 'D' */
|
||||
local i;
|
||||
|
||||
/*
|
||||
* check arg types
|
||||
*/
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
|
||||
/*
|
||||
* check for case 1
|
||||
*/
|
||||
|
@@ -348,7 +348,7 @@ EXT=
|
||||
|
||||
# The default calc versions
|
||||
#
|
||||
VERSION= 2.12.6.0
|
||||
VERSION= 2.12.6.1
|
||||
|
||||
# Names of shared libraries with versions
|
||||
#
|
||||
|
@@ -348,7 +348,7 @@ EXT=
|
||||
|
||||
# The default calc versions
|
||||
#
|
||||
VERSION= 2.12.6.0
|
||||
VERSION= 2.12.6.1
|
||||
|
||||
# Names of shared libraries with versions
|
||||
#
|
||||
|
Reference in New Issue
Block a user